研究论文

铌酸钠粉体的水热法合成研究

  • 王英 ,
  • 易志国 ,
  • 杨群保 ,
  • 王东 ,
  • 李永祥
展开
  • 1. 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 中国科学院研究生院, 北京 100049

收稿日期: 2006-03-10

  修回日期: 2006-06-22

  网络出版日期: 2007-03-20

Hydrothermal Synthesis of Sodium Niobate (NaNbO 3 ) Powders

  • WANG Ying ,
  • YI Zhi-Guo ,
  • YANG Qun-Bao ,
  • WANG Dong ,
  • LI Yong-Xiang
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2006-03-10

  Revised date: 2006-06-22

  Online published: 2007-03-20

摘要

以Nb2O5和NaOH为原料, KOH为矿化剂, 在200℃, 浓度为1mol/L或2.5mol/L的碱性溶液中用水热法制备了具有正交晶系结构的NaNbO3粉体. 采用XRD和FTIR对产物结构进行了表征, 用SEM观察了粉体的结晶形貌, 用EPMA方法估算了产物的主要化学成分. 研究了KOH、表面活性剂以及反应时间等工艺条件对产物形貌和晶体结构的影响. 结果表明, 在相同温度下, OH-的摩尔浓度及反应时间是影响产物结构和形貌的关键因素. 利用透射电镜(TEM)和电子衍射(EDS)发现合成的NaNbO3晶粒中存在超结构.

本文引用格式

王英 , 易志国 , 杨群保 , 王东 , 李永祥 . 铌酸钠粉体的水热法合成研究[J]. 无机材料学报, 2007 , 22(2) : 247 -252 . DOI: 10.3724/SP.J.1077.2007.00247

Abstract

The hydrothermal synthesis of sodium niobate (NaNbO3) powders with orthorhombic structure using Nb2O5 and NaOH as raw materials, KOH as mineralizer, was investigated. The powders were identified by X-ray powder diffraction (XRD) and the Fourier transform infrared (FTIR). The microstructural evolution and the particle size of the samples were examined by scanning electron microscope (SEM), and the main chemical compositions of the powders were studied by EPMA. It is found that there is super-structure existing in NaNbO3 powders by TEM and EDS analysis. The experimental results show that the alkaline concentration and reaction time have influences on the crystal structure and morphology of the resultant powders.

参考文献

[1] Lanfredi S, Dessemond L, Rodrigues A C M. J. Eur. Ceram. Soc., 2000, 20: 983--990.
[2] Nitta T. J. Am. Ceram. Soc., 1968, 51 (11): 626--629.
[3] Zeyfang R R, Henson R M, Maier W J. J. Appl. Phys., 1977, 48 (7): 3014--3017.
[4] Riman R E, Suchanek W L, Lencka M M. Ann. Chim. Sci. Mat., 2002, 27 (6): 15--36.
[5] Wang C L, Zhang P L, Zhong W L, et al. J. Appl. Phys., 1991, 69 (4): 2522--2524.
[6] Goh G K L, Levi C G, Choi J H, et al. J. Crystal Growth, 2006, 286: 457--464.
[7] 古映莹, 戴恩斌, 黄可龙(GU Ying-Ying, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (4): 665--668.
[8] 李汶军, 施尔畏, 王步国, 等(LI Wen-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 1998, 13 (1): 27--32.
[9] 施尔畏, 夏长泰, 王步国, 等(Shi Er-Wei, et al). 无机材料学报(Journal of Inorganic Materials), 1996, 11 (2): 193--206.
[10] Vousden P. Acta Crystallogr., 1951, 4: 373--376.
[11] Kinomura N, Kumata N, Muto F. Mat. Res. Bull., 1984, 19: 299--304.
[12] Santos I C M S, Loureiro L, Silva M F P, et al. Polyhedron, 2002, 21: 2009--2015.
[13] 刘宣勇, 苏文强, 钱端芬, 等. 陶瓷工程, 1999, 33 (1): 52--56.
[14] 刘茜, 高濂, 严东生(LIU Qian, et al). 无机材料学报(Journal of Inorganic Materials), 1996, 11 (2): 281--285.
[15] 沈钟, 王果庭. 胶体与表面化学. 北京: 化学工业出版社, 1997.
[16] 应皆荣, 万春荣, 姜长印, 等. 功能材料, 2001, 32 (2): 118--120.
[17] Liu J F, Li X L, Li Y D. J. Crystal Growth, 2003, 247: 419--424.
[18] Goh G K L, Lange F F, Haile S M, et al. J. Mater. Res., 2003, 18 (2): 338--345.
文章导航

/