研究论文

Gd3+掺杂对Mn-Zn铁氧体结构、磁性能和磁热效应的影响

  • 姚爱华 ,
  • 王德平 ,
  • 黄文hai ,
  • 吴卫和 ,
  • 章林
展开
  • 同济大学材料科学与工程学院, 上海 200092

收稿日期: 2006-04-06

  修回日期: 2006-06-08

  网络出版日期: 2007-03-20

Effect of Gd3+ Dopping on Structure, Magnetic Properties and Heat Effect of Mn-Zn Ferrites

  • YAO Ai-Hua ,
  • WANG De-Ping ,
  • HUANG Wen-Hai ,
  • WU Wei-He ,
  • ZHANG Lin
Expand
  • School of Materials Science and Engineering, Tongji University, Shanghai 200092, China

Received date: 2006-04-06

  Revised date: 2006-06-08

  Online published: 2007-03-20

摘要

采用化学共沉淀法制备了Gd3+掺杂的Mn-Zn铁氧体微粒, 并通过XRD、FTIR、VSM等研究了掺杂量对基体材料结构、磁性能及在外磁场作用下磁热效应的影响. 结果表明, 适量Gd3+的掺杂可以有效改善Mn-Zn铁氧体的磁性能和磁热效应, 成分为Mn0.4Zn0.6Gd0.06Fe1.94O4的铁氧体粉体的粒径约为20nm, 具有最高的饱和磁化强度和矫顽力, 50mg的该样品与1mL水形成的悬浮液, 在频率为60kHz的外磁场诱导下, 升温可达31℃, 显示出较高的磁热性能, 有望作为肿瘤热疗的内加热材料.

本文引用格式

姚爱华 , 王德平 , 黄文hai , 吴卫和 , 章林 . Gd3+掺杂对Mn-Zn铁氧体结构、磁性能和磁热效应的影响[J]. 无机材料学报, 2007 , 22(2) : 201 -204 . DOI: 10.3724/SP.J.1077.2007.00201

Abstract

Gd3+-doped Mn-Zn ferrite nanoparticles were prepared by a chemical co-precipitation method. The effect of Gd3+ contents on structure, magnetic properties and heat effect under AC magnetic field was also investigated. The results show that Gd3+ can enhance the magnetic properties and heat effect of Mn-Zn ferrites with the proper doped amount. Among the samples prepared, Mn0.4Zn0.6Gd0.06Fe1.94O4particles with the size of 20nm possess the maximal magnetization Ms and coercive force Hc. The temperature rise of the suspension of 50g sample and 1mL water can reach up to 31℃ under a 60kHz magnetic field, showing the sufficient heating ability for hyperthermia therapies. The results support the concept that the Gd3+-doped Mn-Zn ferrite nanoparticles may serve as new thermal seeds for magnetic hyperthermia.

参考文献

[1] Konishi K, Maehara T, Kamimori T, et al. J. Magn. Magn. Mater., 2004, 272-276: 2428--2429.
[2] Kim D H, Kim K N, Kim K M, et al. IEEE Trans. Magn., 2004, 40: 2985--2987.
[3] Hilger I, Hergt R, Kaiser W A. J. Magn. Magn. Mater., 2005, 293: 314--319.
[4] 王煦漫, 古宏晨, 杨正强, 等. 功能材料, 2005, 36 (4): 507--509.
[5] Park J H, Im K H, Lee S H, et al. J. Magn. Magn. Mater., 2005, 293: 328--333.
[6] Ma M, Wu Y, Gu N, et al. J. Magn. Magn. Mater., 2004, 268: 33--39.
[7] Upadhyay R V, Mehta R V, Parekh K, et al. J. Magn. Magn. Mater., 1999, 201: 129--132.
[8] 祁景玉. X射线结构分析, 第一版. 上海: 同济大学出版社, 2003. 100--102.
[9] Rezlescu N, Rezlescu E, Popa P D, et al. J. Alloys Compd., 1998, 275-277: 657--659.
[10] Hemeda O M, Said M Z, Barakat M M. J. Magn. Magn. Mater., 2001, 224: 132--142.
[11] Chandrasekaran G, Selvanandan S, Manivannane K. J. Mater. Sci-Mater. Electro., 2004, 15: 15--18.
[12] 徐志刚, 程福祥, 周彪等. 科学通报, 2000, 9: 1837--1841.
[13] Rath C, Anand S, Das R P, et al. J. Appl. Phys., 2002, 91: 2211--2215.
[14] Sattar A A, Wafik A H, Shokrofy K M, et al. Phys. Stat. Sol. (a), 1999, 171: 563--569.
[15] Sattar A A, E1-Sayed H M, E1-Shokrofy K M, et al. J. Appl. Sci., 2005, 5: 162--168.
[16] 高汝伟. 物理, 1997, 26: 538--541.
[17] 蔡小军, 吴知方, 黄文#[49]. 建筑材料学报, 2004, 7: 350--353.
[18] Kim D H, Lee S H, Kim K N, et al. J. Magn. Magn. Mater., 2005, 293: 320--327.

文章导航

/