研究论文

Cu、Ti掺杂的SrFeO3-δ 基混合导体透氧材料的制备与性能研究

  • 张恒 ,
  • 董新法 ,
  • 林维明
展开
  • 1. 华南理工大学化工与能源学院, 广州 510640; 2. 广州大学, 广州 510091

收稿日期: 2006-02-20

  修回日期: 2006-04-11

  网络出版日期: 2007-01-20

Preparation and Properties of SrFeO3-δ Based Mixed Conducting Membrane Material Doped with Cu and Ti

  • ZHANG Heng ,
  • DONG Xin-Fa ,
  • LIN Wei-Ming
Expand
  • 1. School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, China; 2. Guangzhou University, Guangzhou 510091, China

Received date: 2006-02-20

  Revised date: 2006-04-11

  Online published: 2007-01-20

摘要

利用柠檬酸络合法制备了SrFe(Cu,Ti)O3-δ系列混合导体透氧材料. 采用TG-DSC、XRD和透
氧测试等手段分别考察了材料的晶体结构、稳定性及透氧能力. 结果表明, Cu和Ti的掺杂量对材料的晶相组成和透氧量有重要影响, 掺杂Cu能够使晶体内部产生大量的氧空位, 从而使材料具有高透氧量; 掺杂Ti能够提高材料的结构稳定性. SrFe0.6Cu0.3Ti0.1O3-δ同时具备较高的透氧量和稳定性, 在900℃时的透氧量达到0.7mL﹒min-1 cm-2 (STP)

本文引用格式

张恒 , 董新法 , 林维明 . Cu、Ti掺杂的SrFeO3-δ 基混合导体透氧材料的制备与性能研究[J]. 无机材料学报, 2007 , 22(1) : 97 -100 . DOI: 10.3724/SP.J.1077.2007.00097

Abstract

A series of SrFe(Cu,Ti)O3-δ membrane materials were synthesized by a citric acid complex method. The crystal structures and phase stabilities of the materials were studied by TG-DSC and XRD. It is found that Cu and Ti doping content has great effects on the phase component and the oxygen permeability of the materials. The addition of Cu can increase the oxygen vacancy concentration and the addition of Ti can enhance the structure stability.
SrFe0.6Cu0.3Ti0.1O3-δ has pure perovskite structure and exhibits high stability and high oxygen permeation flux which is 0.7mL﹒min-1﹒cm-2 (STP) under air/He gradient at 900℃.

参考文献

[1] Teraoka Y, Zhang H, Yamazoe N. Chemistry Letters, 1985, 9: 1367--1370.
[2] Dyer P N, Richards R E, Russek S L, et al. Solid State Ionics, 2000, 134: 21--33.
[3] Bouwmeester Henny J M. Catalysis Today, 2003, 82: 141--150.
[4] Shao Z, Xiong G, Dong H, et al. Separation and Purification Technology, 2000, 25: 97--116.
[5] Balachandran U, Ma B, Maiya P S, et al. Solid State Ionics, 1998, 108: 363--370.
[6] Deng Z, Liu W, Peng D, et al. Materials Research Bulletin, 2004, 99: 963--969.
[7] Tan L, Yang L, Gu X, et al. Journal of Membrane Science, 2004, 230: 21--27.
[8] Lia S, Jin W, Xu N, et al. Journal of Membrane Science, 2001, 186: 195--204.
[9] Yang L, Gu X, Tan L, et al. Separation and Purification Technology, 2003, 32: 301--306.
[10] 樊传刚, 刘卫, 江国顺(FAN Chuan-Gang, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (1): 121--126.
[11] Li S, Yang W, Fang L, et al. Journal of Solid State Chemistry, 1997, 130: 316--318.
[12] Shaula A L, Yaremchenko A A, Kharton V V, et al. Journal of Membrane Science, 2003, 221: 69--77.
[13] Tatsumi I, Yuko Tsuruta. Toshitsune T, et al. Solid State Ionics, 2002, 152-153: 709--714.
[14] 张华, 金江, 余桂郁(ZHANG Hua, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (3): 440--446.
[15] 宋红章, 杨德林, 胡婕(SONG Hong-Zhang, et al). 无机材料学报(Journal of Inorganic Materials), 2006, 21 (1): 199--203.
[16] Teraoka Y, Nobunaga T, Okamoto K. Solid State Ionics, 1991, 48: 207--212. [17] 于涛, 吴越, 吕光烈, 等. 中国科学B辑, 1988, 18 (4): 351--358.
[18] 刘清青, 王振峰, 彭奎庆, 等. 郑州大学学报(自然科学版), 2000, 32 (2): 44--46.
文章导航

/