研究论文

负热膨胀ZrW1.7Mo0.3O8粉体的水热合成研究

  • 刘芹芹 ,
  • 杨娟 ,
  • 孙秀娟 ,
  • 程晓农
展开
  • 江苏大学材料科学与工程学院, 镇江 212013

收稿日期: 2006-01-23

  修回日期: 2006-05-08

  网络出版日期: 2007-01-20

Hydrothermal Synthesis of Negative Thermal Expansion Material ZrW1.7Mo0.3O8 Powder

  • LIU Qin-Qin ,
  • YANG Juan ,
  • SUN Xiu-Juan ,
  • CHENG Xiao-Nong
Expand
  • School of Material Science and Engineering, Jiangsu University,
    Zhenjiang 212013, China

Received date: 2006-01-23

  Revised date: 2006-05-08

  Online published: 2007-01-20

摘要

以硝酸氧锆、钼酸铵和钨酸铵为原料, 采用水热方法合成了立方相ZrW1.7Mo0.3O8粉体. 分别采用X射线粉末衍射(XRD)、热重-差热分析(TG-DSC)、傅立叶红外光谱(FT-IR)、扫描电镜(SEM)分析测试手段研究了前驱体的晶化过程、产物的结晶度和表面形貌. 结果表明, 采用水热法在550~650℃热处理都能合成出结晶度良好的立方相ZrW1.7Mo0.3O8, 其粒径分布较为均匀, 本征热膨胀系数和宏观热膨胀系数分别为-6.61×10-6K-1和 --5.76×10-6K-1

本文引用格式

刘芹芹 , 杨娟 , 孙秀娟 , 程晓农 . 负热膨胀ZrW1.7Mo0.3O8粉体的水热合成研究[J]. 无机材料学报, 2007 , 22(1) : 70 -74 . DOI: 10.3724/SP.J.1077.2007.00070

Abstract

The negative thermal expansion material cubic phase ZrW1.7Mo0.3O8 powder was synthesized by using zirconium oxynitric, ammonium tungstate and ammonium molydbate as raw materials. X-ray powder diffraction (XRD), thermogravimetric analysis (TG-DSC), Fourier transform infrared spectroscopy (FT-IR), scanning electron
micrograph (SEM) were used to study the crytallization process of the precursor, crystallinity and crystal morphology of the resulted product.
The results show that pure cubic ZrW1.7Mo0.3O8 are prepared, and the particle size distribution is relatively uniform. In the temperature range from ambient temperature to 700℃, the intrinsic and macro thermal expansion coefficients of cubic ZrW1.7Mo0.3O8 are -6.61×10-6K-1 and -5.76×10-6K-1, respectively.

参考文献


[1] Lind C, Wilkinson A P, Hu Z B, et al. Chem. Mater., 1998, 10: 2335--2337.
[2] Mary T A, Evans J S O, Vogt T, et al. Science, 1996, 272: 90--92.
[3] Evans J S O, Mary T A, Vogt T, et al. Chem. Mater., 1996, 8: 2809--2823.
[4] Lind C, Van Derveer D G, Wilkinson A P, et al. Chem. Mater., 2001, 13: 487--490.
[5] Lind C, Wilkinson A P. Sol-Gel Sci. Technol., 2002, 25: 51--56.
[6] Kameswari U, Sleight A W, Evans J S O. Inter. J. Inorg. Mater., 2000, 2: 333--339.
[7] Pryde K A A, Hammonds K D, Dove M A. Phys., 1996, 8: 973--979.
[8] Verdon C, Dunand D C. Scr. Mater., 1997, 36: 1075--1080.
[9] Holzer H, Dunand D C. J. Mater. Res., 1999, 14: 780--789.
[10] Closmann C, Sleight A W. J. Solid State Chem., 1998, 139: 424--426.
[11] Lind C, Wilkinson A P, Rawn C J, et al. J. Mater. Chem., 2001, 11: 3354--3361.
[12] 刘克文, 黄令, 赵新华. 无机化学学报, 2004, 20 (11): 1357--1359.
[13] 邓学彬, 赵新华, 韩京萨. 无机化学学报, 2005, 21 (9): 1357--1362.
[14] 李汝军, 施尔畏, 郑燕青, 等(LI Wen-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2000, 15 (5): 777--786.
[15] 陈友存, 张元广, 周根陶(CHEN You-Cun, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (5): 1173--1176.
[16] DONG C. J. Appl. Cryst., 1999, 32: 838--841.
[17] 邢奇凤, 邢献然, 杜凌, 等. 金属学报, 2005, 41 (16): 669--672.
[18] 沈容, 王天民, 白海龙, 等. 材料工程, 2003, 3: 3--6.
[19] Evans J S O, Mary T A, Vogt T, et al. Chem. Mater., 1996, 8: 2809--2823.
[20] 杨群保, 李永祥, 殷庆瑞, 等(YANG Qun-Bao, et al). 无机材料学报(Journal of Inorganic Materials), 2002, 17 (6): 1135--1139.
[21] 沈容, 王天民. 稀有金属与材料工程, 2004, 33 (1): 91--95.

文章导航

/