研究论文

低温燃烧合成 Al2O3-LaPO4复合粉体及其陶瓷性能研究

  • 龚国良 ,
  • 张宝林 ,
  • 李文兰 ,
  • 庄汉锐
展开
  • 1. 中国科学院上海硅酸盐研究所结构陶瓷工程研究中心, 上海 200050; 2. 中国科学院研究生院, 北京 100049

收稿日期: 2006-02-13

  修回日期: 2006-06-07

  网络出版日期: 2007-01-20

Low-temperature Combustion Synthesis of Al2O3-LaPO4 Composite Powders and the Properties of the Composite

  • GONG Guo-Liang ,
  • ZHANG Bao-Lin ,
  • LI Wen-Lan ,
  • ZHUANG Han-Rui
Expand
  • 1. Structural Ceramics Engineering Center of Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2006-02-13

  Revised date: 2006-06-07

  Online published: 2007-01-20

摘要

以Al(NO3)3、LaPO4和柠檬酸为原料, 采用低温燃烧方法合成Al2O3-LaPO4复合粉体. 在相同热压烧结条件下, ALC50(采用燃烧法合成的复合粉体)相对密度比ALM50(采用球磨混合的复合粉体)提高2.5%, 达到98.5%. 断口形貌分析显示ALC50中晶粒(平均0.56μm) 明显比ALM50中晶粒(平均1.74μm)细化. ALC50的强度、韧性分别比ALM50增加11.1%、11.2%, 而硬度基本相同. 由于弱界面的增加, ALC50钻孔速率比ALM50提高近50%.

本文引用格式

龚国良 , 张宝林 , 李文兰 , 庄汉锐 . 低温燃烧合成 Al2O3-LaPO4复合粉体及其陶瓷性能研究[J]. 无机材料学报, 2007 , 22(1) : 65 -69 . DOI: 10.3724/SP.J.1077.2007.00065

Abstract

Al2O3-LaPO4 composite powders were synthesized by low-temperature combustion synthesis using Al(NO3)3, LaPO4 and citric acid as raw materials. The relative density of hot-pressed ALC50(prepared by combustion-synthesized powders) was 98.5% and improved 2.5% in comparision with ALM50 (prepared by ball-milling of powders mixtures). It is shown that the average grain size of ALC50(0.56μm) is μch smaller than that of ALM50 (1.74μm). The bending strength and fracture toughness of ALC50 are respectively increased by 11.1% and 11.2% while the hardness of ALC50 is almost the same. The drilling rate of ALC50 increases by approximately 50% as compared with that of ALM50 due to the increasement of weak interface.

参考文献

[1] Marshall D B, Morgan P E D, Housley R M, et al. J. Am. Ceram. Soc., 1998, 81 (4): 951--956.
[2] Davis J B, Marshall D B, Housley R M, et al. J. Am. Ceram. Soc., 1998, 81 (8): 2169--2175.
[3] Min W, Miyahara D, Yokoi K, et al. Mater. Res. Bull., 2001, 36: 939--945.
[4] Wang R G, Pan W, Chen J, et al. Ceram. Int., 2003, 29: 19--25.
[5] Wang R G, Pan W, Chen J, et al. Mater. Lett., 2002, 57: 822--827.
[6] 景茂祥, 沈湘黔, 沈裕军(JING Mao-Xing, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (2): 289--294.
[7] 宿新泰, 刘瑞泉(SU Xin-Tai, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (1): 229--233.
[8] Choy J H, Han Y S. Mater. Lett., 1997, 32: 209--215.
[9] Roy S, Sharma A D, Roy S N, et al. Mater. Res. Soc., 1993, 8 (11): 2761--2766.
[10] Rajesh K, Sivakumar B, Pillai P K, et al. Mater. Lett., 2004, 58: 1687--1691.
[11] Guo Y, Woznicki P, Barkatt A. J. Mater. Res., 1996, 11 (3): 639--649.
[12] 吴义权. 氧化铝陶瓷显微结构设计及制备新途径研究. 硕士学位论文, 2001.
[13] 刘彤, 谢志鹏, 陆继伟, 等. 材料工程, 2001, 8: 14--17.
[14] Anderton D J, Sale F R. Powder Metallurgy, 1979, 1: 14--21.
[15] Gallini S, Jurado J R, Colomer M T. Chem. Mater., 2005, 17: 4154--4161.
[16] Braun S, Appel L G, Zinner L B, et al. Brit. Ceram. Trans., 1999, 98: 77--80.
[17] Rice R W, Wu C C, Borchelt F. J. Am. Ceram. Soc., 1994, 77 (10): 2539--2553.
[18] Krell A, Blank P. J. Am. Ceram. Soc., 1995, 78 (4): 1118--1120.
[19] Padture N P, Evans C J, Xu H H K, et al. J. Am. Ceram. Soc., 1995, 78 (1): 215--217.
[20] Kasuga T, Terada M, Nogami M. J. Mater. Res., 2001, 16 (3): 876--880.
文章导航

/