研究论文

LiFePO4纳米粉体的还原插锂合成及其电化学性能研究

  • 邱亚丽 ,
  • 王保峰 ,
  • 杨立
展开
  • 上海交通大学化学化工学院, 上海 200240

收稿日期: 2006-03-14

  修回日期: 2006-05-12

  网络出版日期: 2007-01-20

Synthesis and Electrochemical Properties of LiFePO4 Cathode Material

  • QIU Ya-Li ,
  • WANG Bao-Feng ,
  • YANG Li
Expand
  • School of Chemistry and Chemical Technology, Shanghai Jiaotong University, Shanghai 200240, China

Received date: 2006-03-14

  Revised date: 2006-05-12

  Online published: 2007-01-20

摘要

通过FePO4的低温还原插锂合成了结晶良好、粒径分布均匀的正极材料LiFePO4纳米粉体. 采用XRD、SEM对所得材料的物相结构和表面形貌进行了分析, 并系统研究了烧结条件对材料物
理和电化学性能的影响. 结果表明, 提高烧结温度和延长烧结时间都有利于提高产物的结晶度, 但会使产物的颗粒长大. 600℃下烧结2h所得的LiFePO4表现的电化学性能最佳, 首次放电容量可达159mAh﹒g-1, 50次充放电循环后容量几乎无衰减.

本文引用格式

邱亚丽 , 王保峰 , 杨立 . LiFePO4纳米粉体的还原插锂合成及其电化学性能研究[J]. 无机材料学报, 2007 , 22(1) : 79 -83 . DOI: 10.3724/SP.J.1077.2007.00079

Abstract

The olive-type LiFePO4 was synthesized via sintering the amorphous LiFePO4 obtained by chemical reduction and lithiation of FePO4, using VC as reducer and lithium acetate as lithium source in alcohol solution. The influences of sintering
conditions on the physical and electrochemical properties of resulting LiFePO4 were investigated. XRD and SEM tests show that increasing the sintering temperature and time leads to higher crystallinity, but to a larger particle size. The electrochemical property of LiFePO4 sintered at 600℃ for 2h is the best, its initial discharge capacity at 0.1C rate can reach 159mAh﹒ g-1, its capacity after 50 charge-discharge cycles is nearly no decay.

参考文献

[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Journal of Electrochemical Society, 1997, 144 (4): 1188--1194.
[2] Takahashi M, Tobishima S, Takei K, et al. Journal of Power Sources, 2001, 97-98: 508--511.
[3] Prosini P P, Lisi M, Zane D, et al. Solid State Ionics, 2002, 148 (3): 517--523.
[4] Yamada A, Chung S C, Hinokuma K. Journal of the Electrochemical Society, 2001, 148 (3): A224--A229.
[5] 卢俊彪, 唐子龙, 张中太, 等(LU Jun-Biao, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 666--670.
[6] Doff M M, Hu Y Q, Mclarnon F, et al. Electrochemical and Solid State letter, 2003, 6 (10): A207--A209.
[7] Croce F, Epifanio A D, Hassoun J, et al. Electrochemical and Solid State letter, 2002, 5 (3): A47--A50.
[8] Dominko R, Bele M, Gaberscek M, et al. Journal of the Electrochemical Society, 2005, 152 (3): A607--A610.
[9] Yang S F, Peter Y, Zavalij M, et al. Electrochemistry Communications, 2001, 3: 505--508.
[10] Franger F L, Cras L, Bourbon C, et al. Electrochemical and Solid State Letter, 2002, 5 (10): A231--A223.
[11] Park K S, Kang K T, Lee S B, et al. Material Research Bulletin, 2004, 39: 1803--1810.
[12] Ni J F, Zhou H H, Chen J T, et al. Material Letters, 2005, 59: 2361--2365.
[13] Yang M R, Ke W H, Wu S H. Journal of Power Sources, 2005, 146: 539--543. [14] Park K S, Son J T, Chung H T, et al. Electrochemistry Communications, 2003, 5: 839--842.
[15] 王小建, 任俊霞, 李宇展, 等(WANG Xiao-Jian, et al). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2005, 21 (2): 249--252.
[16] Prosini P P, Carewska M, Scaccia S, et al. Journal of the Electrochemical Society, 2002, 149 (7): A886--A890.
[17] Prosini P P, Carewska M, Scaccia S, et al. Electrochimica Acta, 2003, 48: 4205--4211.
文章导航

/