研究论文

CZ法砷化镓单晶生长中熔体流动状态转换

  • 陈淑仙 ,
  • 李明伟
展开
  • 1. 重庆大学动力工程学院, 重庆 400030; 2. 重庆大学“985 工程”二期建设“生物功能信息分析与仪器研究中心”, 重庆 400030

收稿日期: 2006-03-10

  修回日期: 2006-06-15

  网络出版日期: 2007-01-20

Flow Transitions in Melts during Czochralski Growth of GaAs Single Crystal

  • CHEN Shu-Xian ,
  • LI Ming-Wei
Expand
  • 1. College of Power Engineering, Chongqing University, Chongqing 400030, China; 2. Research Center of Biological Function Information and Instruments of Chongqing University by Second-Term National 985 Project, Chongqing 400030, China

Received date: 2006-03-10

  Revised date: 2006-06-15

  Online published: 2007-01-20

摘要

考虑浮力、热毛细力、离心力和科里奥利力的情况下, 对CZ法砷化镓单晶生长中熔体流动和传热建立了三维时相关紊流数学模型. 通过数值求解预测到了熔体中流动状态的转变. 结果表明, 熔体中温度梯度驱动的浮力与热毛细力的联合作用和晶体旋转产生的离心力与科里奥利力的联合作用相匹配时, 熔体流动为非轴对称流动; 当其中一方占优势时, 熔体流动为轴对称流动. 流动为非轴对称流动时, 熔体中出现斜压热流体波. 由轴对称流动转变为非轴对称流动的机制为斜压不稳定性. 得到了能描述不同条件下熔体流动状态的流动区域图. 数值结果对优质砷化镓单晶生长具有重要的参考价值.

本文引用格式

陈淑仙 , 李明伟 . CZ法砷化镓单晶生长中熔体流动状态转换[J]. 无机材料学报, 2007 , 22(1) : 15 -20 . DOI: 10.3724/SP.J.1077.2007.00015

Abstract

The time-dependent and three-dimensional turbulent mathematics model is established for the flow and heat transfer of GaAs melt in the Czochralski system. The flow transitions in the melts are predicted. When the combined buoyancy and Marangoni forces induced by temperature gradient are comparable to the combined centrifugal and coriolis forces induced by crystal rotation, the flow in the melt is non-axisymmetric, and when either of them is dominant, the flow is axisymmetric. Baroclinic thermal wave is observed in the non-axisymmetric flow. The mechanism of to non-axisymmetric flow is the baroclinic instability. The flow regime diagrams classifying the flow mode under different onditions are obtained. The calculated results can be taken as a reference for growth of GaAs single-crystal with high quality.

参考文献

[1] Morton J L, Ma N, Bliss D F, et al. J. Crystal Growth, 2002, 242 (3-4): 471--485.
[2] Rojo J C, Derby J J. J. Crystal Growth, 1999, 198/199 (2): 154--160.
[3] Enger S, Basu B J. Crystal Growth, 2000, 219 (1-2): 144--164.
[4] 宇惠平, 隋允康, 张峰翊, 等(YU Hui-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (2): 453--458.
[5] Polezhaev V I, Bessonov O A, Nikitin N V, et al. J. Crystal Growth, 2001, 230 (1-2): 40--47.
[6] Nikitin N, Polezhaev V. J. Crystal Growth, 2001, 230 (1-2): 30--39.
[7] LI Mingwei, HU Wenrui, CHEN Nuohu, et al. International Journal of Heat and Mass Transfer, 2002, 45 (13): 2843--2851.
[8] Lipchin A, Brown R A. J. Crystal Growth, 1999, 205 (1-2): 71--91.
[9] 陶文全. 数值传热学, 第二版. 西安: 西安交通大学出版社, 2001. 416--459.
[10] Fein J S, Pfeffer R L. J. Fluid Mech, 1976, 75 (1): 81--112.
[11] Hide R, Mason P J. Advances in Physics, 1975, 24 (1): 47--100.
[12] Lee Y-S, Chun Ch-H. Advances in Space Research, 1999, 24 (10): 1403--1407.




文章导航

/