研究快报

利用原子力显微镜低频声学模式观察氧化锌压敏电阻

  • 赵坤宇 ,
  • 曾华荣 ,
  • 宋红章 ,
  • 程丽红 ,
  • 曾江涛 ,
  • 蔡闻捷 ,
  • 惠森兴 ,
  • 李国荣 ,
  • 殷庆瑞
展开
  • 1. 中国科学院 上海硅酸盐研究所 高性能陶瓷和超微结构国家重点实验室, 上海 200050; 2. 中国科学院 研究生院,北京100049

收稿日期: 2009-01-09

  修回日期: 2009-02-20

  网络出版日期: 2009-07-20

Nanoscale Elastic Response of Grain Boundaries in ZnO Varistors by Acoustic Mode AFM

  • ZHAO Kun-Yu ,
  • ZENG Hua-Rong ,
  • SONG Hong-Zhang ,
  • CHENG Li-Hong ,
  • ZENG Jiang-Tao ,
  • CAI Wen-Jie ,
  • HUI Sen-Xing ,
  • LI Guo-Rong ,
  • YIN Qing-Rui
Expand
  • 1. State Key Lab of High Performance Ceramics and Superfine Structures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2009-01-09

  Revised date: 2009-02-20

  Online published: 2009-07-20

摘要

介绍在商用原子力显微镜上建立的低频声学成像模式,并利用其对氧化锌压敏电阻陶瓷晶界处进行了弹性性能成像.声学像中晶界处微晶的衬度反映了添加物的分布.而晶界处的衬度增强现象可能说明样品经热处理后发生富铋相的相变.结果显示低频声成像的分辨率达到了纳米量级,在功能材料的微区力学性能表征方面具有良好的应用前景.

本文引用格式

赵坤宇 , 曾华荣 , 宋红章 , 程丽红 , 曾江涛 , 蔡闻捷 , 惠森兴 , 李国荣 , 殷庆瑞 . 利用原子力显微镜低频声学模式观察氧化锌压敏电阻[J]. 无机材料学报, 2009 , 24(4) : 869 -872 . DOI: 10.3724/SP.J.1077.2009.09029

Abstract

Low-frequency acoustic mode atomic force microscopy was successfully developed based on the commercial AFM. The experimental results on nanometer scale elastic response at the grain boundaries in ZnO varistors assessed by the technique were presented. Different acoustic contrast of the individual micro-grains at grain boundaries were examined which reflected the distribution of additives. The acoustic contrasts enhanced at the grain boundaries can be observed clearly, which present possibility of crystal lattice expanding of Bi-rich phase caused by phase transition in the heat treatment. The lateral resolution of acoustic image is down to nanometer scale. The results show the application perspective of low-frequency scanning probe acoustic microscopy in functional materials at submicro- or nanometer scale.

参考文献

[1]Levinson L M, Philipp H R. Am. Ceram. Soc. Bull., 1986, 65(4): 639-646.
[2]Greuter F, Blatter G. Semicond. Sci. Tech., 1990(5):111-137.
[3]Bartkowiak M, Mahan G D, Modine F A, et al. J. Appl. Phys., 1996,79(1): 273-281.
[4]Sato Y, Oba F, Yodogawa M, et al. J. Appl. Phys., 2004,95(3): 1258-1264.
[5]Nabhan W, Equer B, Broniaowski A, et al. Rev. Sci. Instr., 1997,68(8): 3108-3111.
[6]Huey B D, Bonnell D A. Solid State Ion., 2000, 131(1/2): 51-60.
[7]Huey B D, Lisjak D, Bonnell D A. J. Am. Ceram. Soc., 1999, 82(7):1941-1944.
[8]Clarke D R. J. Appl. Phys., 1979, 50(11): 6829-6832.
[9]Yin Q R, Yu H F, Zeng H R, et al. Mater. Sci. Eng. B, 2005,120(1/2/3): 100-103.
[10]Yu H F, Zeng H R, Zhang L N, et al. Mater. Lett., 2005,59(12): 1538-1541.
[11]Zeng H R, Yu H F, Hui S X, et al. Solid State Commun., 2005,133(8): 521-525.
[12]Yamanaka K, Ogiso H, Kolosov O. Appl. Phys. Lett., 1994,64(2): 178-180.
[13]Rabe U, Kopycinska M, Hirsekorn S, et al. J. Phys. D: Appl. Phys., 2002,35: 2621-2635.
[14]Hertz H J, Reine J. Angew. Math., 1882,92: 156-171.
[15]Zeng J T, Zhao K Y, Zeng H R, et al. Appl. Phys. A, 2008, 91(2): 261-265.
[16]Inada M. Jpn. J. Appl. Phys., 1979, 18(8): 1439-1446.
[17]Iga A, Matsuoka M, Masuyama T. Jpn. J. Appl. Phys., 1976, 15(6): 1161-1162.
文章导航

/