研究论文

电化学改性PAN基碳纤维表面及其机理探析

  • 郭云霞 ,
  • 刘 杰 ,
  • 梁节英
展开
  • 1. 中北大学 材料科学与工程学院, 太原 030051; 2. 北京化工大学 国家碳纤维工程与技术研究中心, 北京 100029

收稿日期: 2009-01-12

  修回日期: 2009-02-16

  网络出版日期: 2009-07-20

Modification Mechanism of the Surfacetreated PANbased Carbon Fiber by Electrochemical Oxidation

  • GUO Yun-Xia ,
  • LIU Jie ,
  • LIANG Jie-Ying
Expand
  • 1. College of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 2. National Research Center of Carbon Fiber Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 2009-01-12

  Revised date: 2009-02-16

  Online published: 2009-07-20

摘要

表面处理是高性能碳纤维制备的重要环节之一. 采用原子力显微镜(AFM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)和X射线衍射(XRD)等表征方法, 研究了改性聚丙烯腈(PAN)基碳纤维的表面状态, 探讨了电化学氧化法对碳纤维表面的改性机理. 研究结果表明, 在电化学的化学刻蚀作用下, 碳纤维表面薄弱外层被去除, 表面原有沟槽加宽加深, 表面粗糙度增大了1倍多;在电化学的化学氧化作用下, 碳纤维表面的活性官能团增多, (O1s+N1s)/C1s提高了9.7%. 并提出了电化学氧化同时改善了碳纤维的表面物理状态和表面化学状态的 “物化双效”机理.

本文引用格式

郭云霞 , 刘 杰 , 梁节英 . 电化学改性PAN基碳纤维表面及其机理探析[J]. 无机材料学报, 2009 , 24(4) : 853 -858 . DOI: 10.3724/SP.J.1077.2009.00853

Abstract

Surface treatment is one of the most important procedures for the preparation of the high performance carbon fiber. The morphology of the surface-treated PAN carbon fiber was characterized in terms of AFM, SEM, XPS and XRD. And the modification mechanism of the electrochemical oxidation method was also discussed. Results show that the weaker layer of carbon fiber surface is removed by the electrochemistrical etching. As compared with the untreated carbon fiber, the grooves after treatment become widened and deepened, and the surface roughness is also increased one-fold. The functional groups on the carbon fiber surface are increased after the chemical oxidation of electrochemistry, as confirmed by that the (O1s+N1s)/C1s atomic ratio is increased by 9.7%. The physical and chemical double effectiveness mechanism is put forward that the physical and chemical state of the carbon fiber surface can be improved simultaneously by the electrochemical oxidation.

参考文献

[1]贺 福, 王茂章. 碳纤维及其复合材料. 2版. 北京: 科学出版社, 1997, 1: 150-168.
[2]贺 福, 杨永岗. 高科技纤维与应用, 2000, 25(5): 30-37.
[3]邵友林, 王伯羲. 复合材料学报, 2002, 19(4): 29-32.
[4]Pittman C U Jr, Jiang W, Yue Z R, et al. Carbon, 1999, 37(1): 85-96.
[5]Li Bin, Zhang ChangRui, Cao Feng, et al. Materials Science and Engineering A, 2007, 471(2): 169-173.
[6]Zhang Gaixia, Sun Shuhui, Yang Dequan, et al. Carbon, 2008, 46(2): 196-205.
[7]Huang Hua-Cun, Ye Dai-Qi, Huang Bi-Chun. Surface and Coatings Technology, 2007, 20(24): 9533-9540.
[8]Park Soo-Jin, Kim Byung-Joo. Materials Science and Engineering A, 2005, 408(1): 269-273.
[9]Harry I D, Saha B, Cumming I W. Carbon, 2007, 45(4): 766-774.
[10]Lindsay Beatrice, Abel Marie-Laure, Watts John F. Carbon, 2007, 45(12): 2433-2444.
[11]Manabu Ishifune, Ryuhei Suzuki, Yasuo Mima, et al. Electrochimica Acta, 2005, 5(1): 14-22.
[12]郭云霞, 刘 杰, 梁节英. 复合材料学报, 2005, 22(3): 49-54.
[13]吴 庆, 陈惠芳, 潘 鼎. 炭素, 2000(3): 21-25.
[14]Yumitori S, Nakanishi Y. Composites, Part A, 1996, 27A(11): 1059-1066.
[15]Denison P, Jones J F, Watts J F. Surface and Interface Analysis, 1988, 12(8): 455-460.
[16]Fukunaga Akihiko, Ueda Shigetomo. Composites Science and Technology, 2000, 60(2): 249-254.
[17]张志勇. 碳纤维阳极氧化表面处理及氧冷等离子体对碳和石墨碳纤维表面的改性. 北京:北京化工大学硕士论文, 1993.
[18]Kozlowski C, Sherwood Peter M A. Carbon, 1986, 24(3): 357-363.
[19]Ryu Seung-Kon, Park Byung-Jae, Park Soo-Jin. Journal of Colloid and Interface Science, 1999, 215(1): 167-169.
[20]藤凤思, 王煜明, 姜小龙. X射线结构分析与材料性能表征. 北京: 科学出版社, 1997: 258-315.
[21]何曼君, 陈维孝, 董西侠. 高分子物理. 5版. 上海: 复旦大学出版社, 1998: 97-102.
[22]刘 杰,李 佳,王 雷,等. 新型炭材料, 2008, 23(2): 177-184.
文章导航

/