研究论文

溶胶-凝胶法制备多晶莫来石纤维

  • 李呈顺 ,
  • 张玉军 ,
  • 张景德
展开
  • 山东大学 材料科学与工程学院, 济南 250061

收稿日期: 2008-11-18

  修回日期: 2009-02-03

  网络出版日期: 2009-07-20

Polycrystalline Mullite Fibers Prepared by Sol-Gel Method

  • LI Cheng-Shun ,
  • ZHANG Yu-Jun ,
  • ZHANG Jing-De
Expand
  • School of Materials Science and Engineering, Shandong University, Jinan 250061, China

Received date: 2008-11-18

  Revised date: 2009-02-03

  Online published: 2009-07-20

摘要

以廉价的铝粉、工业盐酸和酸性硅溶胶为主要原料, 通过溶胶凝胶法制备了多晶莫来石纤维. 采用27Al NMR测试了聚合氯化铝溶胶中Al3+的聚集状态, 采用XRD、FT-IR、SEM和TG-DTA等手段表征了不同热处理温度下莫来石纤维的物相组成、纤维形貌以及纤维的热分解特性. 27Al NMR结果表明, Al3+主要以Keggin结构的Al13形态存在于聚合氯化铝溶胶中. 具有24个活性Al-OH键的Al13聚阳离子易与硅溶胶中的Si-OH发生失水缩聚反应, 生成具有长链结构的纺丝溶液. XRD、FT-IR和TG-DTA结果表明, 纤维热处理到950℃时开始结晶, 到1000℃可获得单一的莫来石晶相, 整个过程的纤维失重在48.24%. 经1250℃热处理, 获得的莫来石纤维的直径为3~5μm, 晶粒尺寸约为240 nm, 拉伸强度为1.1GPa.

本文引用格式

李呈顺 , 张玉军 , 张景德 . 溶胶-凝胶法制备多晶莫来石纤维[J]. 无机材料学报, 2009 , 24(4) : 848 -852 . DOI: 10.3724/SP.J.1077.2009.00848

Abstract

Polycrystalline mullite fibers were prepared by sol-gel method, using aluminum powders, hydrochloric acid and silica sol as raw materials, water as solvent. The aggregation state of Al3+ was measured by 27Al NMR. The pyrolytic decomposition patterns of mullite fibers were assessed by heating samples to different temperatures and characterizing the products by thermogravimetric analysis (TG), differential thermal analysis (DTA), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FT-IR). The micrograph of mullite fibers were observed by means of Scanning Electron Microscope (SEM). The results of 27Al NMR show that Al3+ ions aggregate in the PAC sol in the form of Al13 with Keggin structure. TG/DTA analyses show the exotherm at 970℃ can be attributed to the formation of mullite phase and weight loss of the mullite fibers in the heat treatment reaches 48.24%. XRD and FT-IR analyses show that phasepure mullite can be formed at 1000℃ with no other intermediate. After heat-treated at 1250℃, the mullite crystalline fibers with diameter of 3-5μm, grain size of 240nm and tensile strength of 1.1GPa are obtained.

参考文献

[1]刘从华, 邓友全, 李 强, 等. 高等学校化学学报,2003, 24(4): 698-702.
[2]罗驹华, 侯贵华, 周勇敏, 等. 硅酸盐学报, 2003, 31(3): 258-261.
[3]孔勇发, 杨正方, 张万林, 等. 硅酸盐通报, 1999, 18(4): 28-32.
[4]常安国. 中国铸机, 1994(1):49-53.
[5]许伟荣. 能源技术(上海), 2000, 21(2): 103-104.
[6]Ha J S, Chawla K K. Materials Science and Engineering A, 1995, 203(1/2): 171-176.
[7]徐建梅, 张 德. 地质科技情报, 1999, 18(4): 103-106.
[8]曾庆冰, 李效东, 陆 逸. 高分子材料科学与工程, 1998, 14(2): 138-143.
[9]Yogo T, Aksay I A. Journal of Materials Chemistry, 1994, 4(2): 353-359.
[10]Naskar M K, Chatterjee M, Dey A, et al. Ceramics International, 2004, 30(2): 257-265.
[11]Schmücker M, Schneider H, Mauer T, et al. Journal of the European Ceramic Society, 2005, 25(14): 3249-3256.
[12]Song Ki Chang. Materials Letters, 1998, 35(5/6): 290-296.
[13]Okada Kiyoshi, Yasohama Shuichi, Hayashi Shigeo, et al. Journal of the European Ceramic Society, 1998, 18(13): 1879-1884.
[14]郝向东, 王新威, 朱红波. 高科技纤维与应用, 2003, 28(3): 39-42.
[15]于月华, 柳 松, 黄冬根. 无机盐工业, 2006, 38(1): 35-37.
[16]李润生, 李 凯. 中国给水排水, 2002, 18(10): 45-48.
[17]杨立新, 何子涵, 李朝霞, 等. 湘潭大学自然科学学报, 2005, 27(4): 68-72.
[18]宁寻安, 李润生, 温琰茂.环境化学, 2007, 26(3): 352-356.
[19]赵 艳, 张冰如, 李 霞, 等. 应用化学, 2004, 21(2): 212-214.
[20]薛明俊, 周世圭, 王 宗, 等. 玻璃与搪瓷, 1994, 22(5):14-21.
[21]王志明, 吴 昊. 玻璃纤维, 2000(1): 6-8.
文章导航

/