研究论文

SnO2-Sb2O3基压敏陶瓷致密化及脉冲电流耐受特性

  • 卢振亚 ,
  • 黄 欢 ,
  • 吴建青
展开
  • 华南理工大学 材料科学与工程学院, 广州 510640

收稿日期: 2008-12-15

  修回日期: 2009-01-20

  网络出版日期: 2009-07-20

Densification and Surge Current Performance of SnO2-Sb2O3 Based Varistor Ceramics

  • LU Zhen-Ya ,
  • HUANG Huan ,
  • WU Jian-Qing
Expand
  • College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

Received date: 2008-12-15

  Revised date: 2009-01-20

  Online published: 2009-07-20

摘要

实验研究了TiO2、Co3O4、Cr2O3、Ni2O3和MnO掺杂对SnO2-Sb2O3基压敏陶瓷材料微观结构和电性能的影响. 研究结果表明, TiO2和Co3O4促进SnO2陶瓷烧结致密化, 根据XRD图谱分析结果, Co3O4与SnO2反应形成了Co2SnO4晶相, TiO2则固溶于SnO2晶相;Sb元素的引入能够促进SnO2晶粒的半导化;复合添加Cr2O3、Ni2O3和MnO可以有效提高材料的电压非线性特性和脉冲电流冲击耐受能力. 获得电性能接近实用化的SnO2压敏陶瓷样品, 其压敏电压V1mA约为350V/mm, 非线性系数α达到50, 漏电流小于5μA, 并且在8/20μs脉冲电流冲击试验中,直径14mm的样品能够经受2kA的脉冲峰值电流.

本文引用格式

卢振亚 , 黄 欢 , 吴建青 . SnO2-Sb2O3基压敏陶瓷致密化及脉冲电流耐受特性[J]. 无机材料学报, 2009 , 24(4) : 841 -844 . DOI: 10.3724/SP.J.1077.2009.00841

Abstract

Influence of TiO2, Co3O4, Cr2O3, Ni2O3 and MnO dopings on the microstructure and electrical properties of SnO2-Sb2O3 based varistor ceramic materials was investigated. It is found that TiO2 and Co3O4 are effective dopants for improving densification of SnO2 ceramics. According to XRD analysis, Co2SnO4 crystal phase are formed by the reaction between Co3O4 and SnO2, and TiO2 is dissolved into the SnO2 phase. Doping of Sb2O3 can improve the semiconducting processes of SnO2 grains. Co-doping Cr2O3, Ni2O3 and MnO is efficient to improve the nonlinear property and surge current withstanding performance of the materials. The samples with a diameter of 14mm have a nonlinear coefficient (α) of about 50, a breakdown electric filed of about 350V/mm and a leakage current of less than 5μA, and the withstanding surge peak current of 8/20μs waveshape is about 2kA, which meet practical requirement.

参考文献

[1]Matsuoka M. Jpn. J. Appl. Phys., 1971, 10(6): 736-746.
[2]Gupta T K. J. Am. Ceram. Soc., 1990, 73(7): 1817-1840.
[3]Mahan G D, Levinson L M, Philipp H R. Appl. Phys. Lett., 1978, 33(9): 830-832.
[4]Bartkowiak M, Mahan G D, Modine F A, et al. J. Appl. Phys., 1996, 79(1): 273-281.
[5]Pianaro S A, Bueno P R, Longo E, et al. J. Mater. Sci. Lett., 1995, 14(10): 692-694.
[6]Bueno P R, Pianaro S A, Pereira E C, et al. J. Appl. Phys., 1998, 84(7): 3700-3705.
[7]Bueno P R, CassiaSantos M R, Leite E R, et al. J. Appl. Phys., 2000, 88(11): 6545-6548.
[8]Bueno P R, Leite E R, Oliveira M M, et al. Appl. Phys. Lett., 2001, 79(1): 48-50.
[9]Vasconcelos J S, Vasconcelos N S L S, Orlandi M O, et al. Appl. Phys. Lett., 2006, 89(15): 152102-1-3.
[10]李长鹏, 王矜奉, 陈洪存, 等.压电与声光, 2001, 23(4): 309-312.
[11]李长鹏, 王矜奉, 陈洪存, 等. 压电与声光, 2001, 23(5): 362-365.
[12]亓 鹏, 王矜奉, 陈洪存, 等.电子元件与材料, 2002,21(11): 1-6.
[13]王春明, 王矜奉, 陈洪存, 等.压电与声光, 2004, 26(2): 139-145.
[14]王矜奉, 陈洪存, 王文新, 等.电子元件与材料, 2003, 22(4): 8-10.
[15]明保全, 王矜奉, 陈洪存, 等. 电子元件与材料, 2004, 23(6): 20-27.
[16]Bartkowiak M, Mahan G D, Modine F A, et al. J. Appl. Phys., 1996, 79(1): 273-281.
文章导航

/