研究论文

真空气氛下非晶硅碳氮(SiCN)陶瓷的高温晶化行为

  • 夏 熠 ,
  • 乔生儒 ,
  • 王强强 ,
  • 张程煜 ,
  • 韩 栋 ,
  • 李 玫
展开
  • 西北工业大学 超高温结构复合材料实验室, 西安 710072

收稿日期: 2008-10-23

  修回日期: 2008-12-25

  网络出版日期: 2009-07-20

Crystallization of Amorphous SiCN Ceramic Annealed in Vacuum

  • XIA Yi ,
  • QIAO Sheng-Ru ,
  • WANG Qiang-Qiang ,
  • ZHANG Cheng-Yu ,
  • HAN Dong ,
  • LI Mei
Expand
  • National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2008-10-23

  Revised date: 2008-12-25

  Online published: 2009-07-20

摘要

以六甲基二硅氮烷为单一前驱体,采用电热裂解化学气相沉积技术制备了SiCN陶瓷. 借助X射线衍射仪、透射电子显微镜研究了真空环境中非晶SiCN陶瓷在1300~1900℃范围内的晶化行为,并根据研究结果,运用分解-结晶机理解释了其晶化过程. 非晶SiCN陶瓷在低于1300℃开始发生分解,形成富Si-C区域,并最终发生β-SiC结晶. 其结晶度随热处理温度的升高而愈加明显.在1700℃处理时发生β-SiC→α-SiC相变. 分解形成的N-难以与Si-结合形成富Si-N区域,最终以N2形式溢出,在整个热处理温度范围没有出现氮气下热处理时存在的Si3N4结晶.

本文引用格式

夏 熠 , 乔生儒 , 王强强 , 张程煜 , 韩 栋 , 李 玫 . 真空气氛下非晶硅碳氮(SiCN)陶瓷的高温晶化行为[J]. 无机材料学报, 2009 , 24(4) : 827 -830 . DOI: 10.3724/SP.J.1077.2009.00827

Abstract

SiCN ceramic was fabricated by electro-thermal pyrolysis using hexamethyldisilazane as precursor. X-ray diffraction and transmission electron microscope were employed to study crystallization process of amorphous SiCN after annealing at temperature from 1700℃ to 1900℃ in vacuum. Decomposition-crystallization mechanism was used to characterize its crystallization process. Amorphous SiCN begin to decompose below 1300℃ in vacuum and Si-C-enriched districts are formed and then changes to form β-SiC crystal. Crystallinity degree increases as treated temperature rises. Phase transition from β-SiC to α-SiC occurs after annealing at 1700℃. The nitrogen is released in the form of N2 and Si3N4 crystal is not detected though it often exists in the SiCN annealed in N2 atmosphere.

参考文献

[1]Shah S R, Raj R. Acta Mater., 2002, 50(16): 4093-4103.
[2]Chen L C, Chen K H, Wei S L, et al. Thin Solid Films, 1999, 355-356: 112-116.
[3]Zimmermann A, Bauer A, Christ M, et al. Acta Mater., 2002, 50(5):1187-1196.
[4]An L, Riedel R, Konetachny C, et al. J. Am. Ceram. Soc., 1998, 81(5):1349-1352.
[5]Bahloul D, Goursat P, Lavedrine A. J. Euro. Ceram. Soc., 1993, 11(1): 63- 68.
[6]Bharadwaj L, Fan Y, Zhang L, et al. J. Am. Ceram. Soc., 2004, 87(3): 483-486.
[7]Liew LA, Zhang W, Bright V M, et al. Sensors and Actuators A, 2001, 89(1/2): 64-70.
[8]Ziegler G, Kleebe H-J, Motz G, et al. Mater. Chem. Phys., 1999, 61(1):55-63.
[9]Kleebe H J, Suttor D, Müller H,et al. J. Am. Ceram. Soc., 1998, 81(11): 2971-2977.
[10]Schmidt H, Borchardt G, Müller A, et al. J. Non-Cryst. Solids, 2004, 341(1/2/3):133-140.
[11]Schiavon M A, Sorarù G D, Yoshida I V P. J. Non-Cryst. Solids, 2002, 304(1/2/3):76-83.
[12]江东亮, 陆忠乾, 黄政仁, 等(JIANG Dong-Liang, et al).无机材料学报(Journal of Inorganic Materials), 1997, 22(3): 356-362.
[13]乔生儒, 卢国锋, 钟杰华, 等.基体前驱体液气相热解制备碳/碳碳化硅复合材料的方法. 中国, 发明专利, ZL 2006 1 0043034.4. 2008.03.05.
[14]Izumi A, Oda K. Thin Solid Films, 2006, 501(1/2):195-197.
[15]Seifert HJ, Peng J, Lukas HL, et al. J. Alloys Comp., 2001, 320(2):251-261.
文章导航

/