研究了以聚乙烯亚胺 (PEI) 为分散剂,ZrB2粉体在水相中的分散性能. 结果显示ZrB2的等电点在pH为5.7,加入PEI后的等电点移到pH为11.5. 以PEI为分散剂,在pH为8.0处制备了固含量达45vol%的ZrB2-20vol%SiC陶瓷浆料. 采用注浆成型方法制备了相对密度为53%的ZrB2-SiC陶瓷坯体,并对其进行了无压烧结,同时研究了硼粉为烧结助剂对其致密化及性能的影响. 结果表明:硼粉为烧结助剂,实现了ZrB2-SiC陶瓷的完全致密化的同时,也降低了ZrB2-SiC陶瓷的烧结温度,2100℃烧结3h后的陶瓷维氏硬度为(17.5±0.5)GPa,弯曲强度为(406±41)MPa,断裂韧性为(4.6±0.4)MPa·m1/2.
The dispersion of ZrB2 particles in water was investigated using polyethyleneimine (PEI) as a dispersant. Results showed that the ZrB2 slurry had a isoelectric point of pH=5.7. The application of PEI changed the isoelectric point of the ZrB2 slurry to pH=11.5. High solids loading (45vol%) ZrB2-20vol% SiC slurries were prepared at pH=8.0 by adding 1.0wt% PEI. The green body prepared by slip casting had a relative density of 53%. The effects of boron as a sintering aid on the pressureless sintering process of the ZrB2-20vol% SiC ceramics were investigated. Nearly fully dense ZrB2- SiC composites were obtained by sintering at 2100℃ for 3 h. The sintered ceramics demonstrated a Vickers hardness of (17.5±0.5)GPa, a flexure strength of (406±41)MPa,and a fracture toughness of (4.6±0.4)MPa·m1/2.
[1]Fahrenholtz W G, Hilmas G E, Talmy I G, et al. Journal of the American Ceramic Society, 2007, 90(5): 1347-1364.
[2]闫永杰,张 辉,黄政仁,等(YAN Yong-Jie, et al). 无机材料学报(Journal of Inorganic Materials),2008,23(4):816-818.
[3]杨飞宇,张幸红,韩杰才,等(YANG Fei-Yu, et al).无机材料学报(Journal of Inorganic Materials),2008,23(4):734-738.
[4]Sciti D, Brach M, Bellosi A. Scripta Materialia, 2005, 53(11): 1297-1302.
[5]Zhu S M, Fahrenholtz W G, Hilmas G E. Journal of the American Ceramic Society, 2007, 27(4): 2077-2083.
[6]Rezaie A, Fahrenholtz W G, Hilmas G E. Journal of Materials Science, 2007, 42(8): 2735-2744.
[7]Zhang G J, Deng Z Y, Kondo N, et al. Journal of the American Ceramic Society, 2000, 83(9): 2330-2332.
[8]Wu W W, Zhang G J, Kan Y M, et al. Journal of the American Ceramic Society, 2006, 89(9): 2967-2969.
[9]Wu W W, Zhang G J, Kan Y M, et al. Journal of the American Ceramic Society, 2008, 91(8): 2501-2508.
[10]Zhao Y, Wang L J, Zhang G J, et al. Journal of the American Ceramic Society, 2007, 90(12): 4040-4042.
[11]Wu W W, Zhang G J, Kan Y M, et al. Scripta Materialia, 2007, 57(4): 317-320.
[12]Yan Y J, Huang Z R, Dong S M, et al. Journal of the American Ceramic Society, 2006, 89(11): 3589-3592.
[13]Zhang S C, Hilmas G E, Fahrenholtz W G. Journal of the American Ceramic Society, 2008, 91(1): 26-32.
[14]Zou J, Zhang G J, Kan Y M, et al. Scripta Materialia, 2008, 59(3): 309-312.
[15]Chamberlain A L, Fahrenholtz W G, Hilmas G E. Journal of the American Ceramic Society, 2006, 89(2): 450-456.
[16]Zhang S C, Hilmas G E, Fahrenholtz W G. Journal of the American Ceramic Society, 2006, 89(5): 1544-1550.
[17]Zhu S M, Fahrenholtz W G, Hilmas G E, et al. Journal of the American Ceramic Society, 2007, 90(11): 3660-3663.
[18]Li Y, Lin J, Gao J, et al. Materials Science and Engineering: A, 2008, 483484:676-678.
[19]Huang T S, Hilmas G E, Fahrenholtz W G, et al. International Journal of Applied Ceramic Technology,2007, 4(5): 470-479.
[20]Lee S H, Sakka Y, Kagawa Y. Journal of the American Ceramic Society, 2007, 90(11): 3455-3459.
[21]Tang F Q, Huang X X, Zhang Y F, et al. Ceramics International, 2000, 26(1): 93-97.
[22]Zhang J X, Jiang D L, Tan S H, et al. Journal of Materials Research, 2002, 17(8): 2012-2018.
[23]Zhang J X, Jiang D L, Tan S H, et al. Journal of the American Ceramic Society, 2001, 84(11): 2537-2541.