采用热等静压原位合成了高致密的Ti3SiC2-64vol%SiC复相陶瓷. 通过热重实验研究其在1100~1450℃中空气气氛的高温氧化行为和机理. 研究显示,复相陶瓷的等温动力学曲线遵循抛物线型氧化或抛物线型直线型氧化规律. SiC (64vol%)的引入显著提高了Ti3SiC2-SiC材料的抗氧化能力. XRD及SEM-EDS分析显示,氧化膜由外层金红石型TiO2和非晶态SiO2组成,过渡层为TiO2与SiO2混合物. 高温下(1400℃),非晶态SiO2的形成改变了TiO2膜的生长形态,形成致密TiO2膜,有效阻碍了氧的扩散. 长时间氧化其抛物线速率常数比在1200℃下氧化低一个数量级. 材料在1400℃下的抗氧化性能明显优于在1200℃下的抗氧化性能.
Full dense Ti3SiC2-64vol%SiC ceramics were successfully fabricated by in situ synthesis under hot isostatic pressing (HIP). The high temperature oxidation behaviors and mechanisms of the ceramics were studied by thermogravimetry tests (TG) at 1100-1450℃ in air. Testing results indicate the curves of isothermal kinetics of the ceramics obey parabolic oxidized law or paraboliclinear oxidized law. The addition of SiC (64vol%) efficiently improves the oxidation resistance of Ti3SiC2-SiC ceramics. According to XRD and SEM-EDS results, the oxidized layers are composed of an outer layer of TiO2 (rutile) and SiO2 (glass),and a transition layer of mixture of TiO2 and SiO2. At high temperature (1400℃), the growth morphology of TiO2 layer can be influenced by the formation of glassy SiO2. The continuous and dense TiO2 films which can efficiently prevent the diffusion of oxygen are formed. The parabolic rate constants decrease about one order of being oxidized at 1400℃ for long time compared with that oxidized at 1200℃. The oxidation resistance of Ti3SiC2-64vol% SiC ceramics at 1400℃ is better than that oxidized at 1200℃.
[1]Zhen T, Barsoum M W, Kalidindi S R, et al. Acta Materialia, 2005, 53(20): 4963-4973.
[2]Wang L J, Jiang W, Chao Q, et al. Mater. Sci. & Eng. A, 2006, 425(1/2): 219-224.
[3]Yang S L, Sun Z M, Hashimoto H, et al. Oxid. Met., 2003, 59(1/2): 155-165.
[4]Sun Z, Zhou Y, Li M. Acta Materialia, 2001, 49(20): 4347-4353.
[5]刘光明,李美栓,周延春, 等. 材料研究学报,2002, 16(3): 263-267.
[6]张建峰,施 璐,王连军, 等(ZHANG Jian-Feng, et al). 无机材料学报(Journal of Inorganic Materials),2008,23(6): 1147-1150.
[7]Li S B, Xie J X, Zhang L T, et al. Materials Letters, 2003, 57(20): 3048-3056.
[8]Zhang J F, Wang L J, Jiang W, et al. Composites Sci. & Tech., 2008, 68(6): 1531-1538.
[9]Zhu D G, Wang Z G. Materials Science Forum, 2007, 561565(1): 687-691.
[10]王志钢,朱德贵. 硅酸盐通报,2006, 25(4): 6-10.
[11]闻荻江. 复合材料原理. 武汉: 武汉工业大学出版社, 1998: 6-12.
[12]Low I M, Wren E, Prince K E, et al. Mater. Sci. Eng. A, 2007, 466(1/2): 140-147.
[13]Oo Z, Low I M, Connor B H O. Physica B, 2006, 385-386(1): 499-501.