研究论文

不同沉淀剂对Nd3+∶Lu2O3纳米粉体性能的影响

  • 周 鼎 ,
  • 施 鹰 ,
  • 云 平 ,
  • 谢建军
展开
  • 上海大学 材料科学与工程学院 电子信息材料系, 上海 200072

收稿日期: 2008-10-21

  修回日期: 2009-01-16

  网络出版日期: 2009-07-20

Effects of Precipitants on the Properties of Nd3+∶Lu2O3 Nano-powders

  • ZHOU Ding ,
  • SHI Ying ,
  • YUN Ping ,
  • XIE Jian-Jun
Expand
  • Department of Electronics and Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China

Received date: 2008-10-21

  Revised date: 2009-01-16

  Online published: 2009-07-20

摘要

采用湿化学共沉淀法合成了Nd3+掺杂的氧化镥纳米晶粉体, 研究了三种不同沉淀剂(NH4OH、NH4HCO3、NH4OH+NH4HCO3)对Nd3+∶Lu2O3纳米晶粉体性能的影响. 采用NH4OH+NH4HCO3混合溶液作复合沉淀剂所得粉体具有比表面积高(13.37m2/g)、颗粒尺寸小(~30nm)、粒度分布窄(60~160nm)的优点. 该粉体经过干压和等静压成型后, 素坯从室温至1400℃获得的线性收缩率可达17%, 其烧结活性明显高于其它两种沉淀剂所得的粉体. 在流动H2气氛下, 经1880℃/8h烧结可获得具有优良光学透明性的Nd3+∶Lu2O3透明陶瓷, 在1080nm波长处的直线透过率超过75%.

本文引用格式

周 鼎 , 施 鹰 , 云 平 , 谢建军 . 不同沉淀剂对Nd3+∶Lu2O3纳米粉体性能的影响[J]. 无机材料学报, 2009 , 24(4) : 764 -768 . DOI: 10.3724/SP.J.1077.2009.00764

Abstract

Neodymium doped lutetia nanocrystalline powders were synthesized by a wet chemical processing using three different precipitants, i.e. ammonium hydroxide (NH4OH), ammonium hydrogen carbonate (NH4HCO3) and the mixed solution of NH4OH+NH4HCO3, respectively. Compared with the other two precipitants, the Nd-doped Lu2O3 powder synthesized by mixed solution of NH4OH+NH4HCO3 had the advantages of higher specific surface area, smaller particle size (30nm) and narrower particle size distribution (from 60nm to 160nm). Green compacts were formed from as-synthesized Nd3+∶Lu2O3 powders by dry-pressing followed by a cold isostatic pressing. The green compact made from powders synthesized by mixed precipitants acheived the highest linear thermal shrinkage of about 17% at 1400℃, demonstrating more superior sinterbility than the other two powders. Highly transparent samples were obtained after being sintered in flowing H2 atmosphere at 1880℃ for 8h. The linear optical transmittance of the polished transparent samples reached 75.5% at the wavelength of 1080nm.

参考文献

[1]Ikesue A, Furusato I, Kamata K. J. Am. Ceram. Soc., 1995, 78(1): 225-228.
[2]Ikesue A, Kinoshita T, Kamata K, et al. J. Am. Ceram. Soc., 1995, 78(4): 1033-1040.
[3]Ikesue A, Kamata K, Yoshida K. J. Am. Ceram. Soc., 1996, 79(7): 1921-1926.
[4]Lu J, Takaichi K, Uematsu T, et al. Appl. Phys. Lett., 2002, 81(23): 4324-4326.
[5]Takaichi K, Yagi H, Shirakawa A, et al. Phys. Stat. Sol. (a), 2005, 202(1): R1-R3.
[6]Kopylov Y L, Kravchenko V B, Komarov A A, et al. Opt. Mater., 2007, 29(10): 1236-1239.
[7]Zych E, Hreniak D, Strek W, et al. J. Alloys Compd., 2002, 341(1/2): 391-394.
[8]Piegza J, Zych E. J. Alloys Compd., 2004, 380(1/2): 118-122.
[9]Wang J C, Liu Q, Liu Q F. J. Mater. Chem., 2005, 15(38): 4141-4146.
[10]Wang J C, Liu Q, Liu Q F. Opt. Mater., 2007, 29(6): 593-597.
[11]Zych E. Opt. Mater., 2001, 16(4): 445-452.
[12]Zych E, Hreniak D, Strek W. J. Alloys Compd., 2002, 341(1/2): 385-390.
[13]Zych E, Piegza J. Chem. Mater., 2006, 18(8): 2194-2199.
[14]Chen Q W, Shi Y, An L Q, et al. J. Eur. Ceram. Soc., 2007, 27(1): 191-197.
[15]Li J G, Ikegami T, Mori T. J. Am. Ceram. Soc., 2005, 88(4): 817-821.
文章导航

/