研究论文

静电自组装铁电复合超薄膜及特性研究

  • 叶 芸 ,
  • 蒋亚东
展开
  • 1. 福州大学 物理与信息工程学院, 福州 350002; 2. 成都电子科技大学 光电信息学院, 成都 610054

收稿日期: 2008-10-13

  修回日期: 2008-12-21

  网络出版日期: 2009-07-20

Preparation and Characterization of Ferroelectric Composite Ultrathin Film by Electrostatic Self-assembly

  • YE Yun ,
  • JIANG Ya-Dong
Expand
  • 1. College of Physics and Telecommunication Engineering, Fuzhou University, Fuzhou 350002, China; 2. School of Optoelectronic Information, University of Electric Science and Technology of China, Chengdu 610054, China

Received date: 2008-10-13

  Revised date: 2008-12-21

  Online published: 2009-07-20

摘要

将极化处理后充负电荷的聚偏氟乙烯(PVDF)有机铁电聚合物薄膜经溶解,与BaTiO3无机纳米粉体形成良好分散的PVDF-BT荷电阴离子溶液和聚二丙烯基二甲基氯化铵(PDDA)聚阳离子溶液,通过静电作用在石英基片上交替自组装PDDA/PVDF-BT铁电复合超薄膜. 采用石英晶体微天平(QCM)、扫描电子显微镜(SEM)、X射线衍射分析(XRD)对该铁电复合超薄膜进行了表征. 研究结果表明:自组装12层PDDA/PVDFBT铁电复合超薄膜厚度为82nm,且静电自组装过程均匀,复合超薄膜表面平整、致密,无机纳米颗粒规整并均匀地覆盖在石英基底表面. 通过在PDDA/PVDF复合超薄膜间引入BaTiO3无机纳米铁电粉体,可实现对超薄膜内部结构以及膜厚度的控制,极化强度可提高到约3μC/cm2.

本文引用格式

叶 芸 , 蒋亚东 . 静电自组装铁电复合超薄膜及特性研究[J]. 无机材料学报, 2009 , 24(4) : 741 -744 . DOI: 10.3724/SP.J.1077.2009.00741

Abstract

The ferroelectric ultrathin multilayer of PDDA/PVDF-BT were fabricated on the pretreated quartz substrates between cationic electrolyte of poly (diallyldimethyl ammonium chloride) (PDDA) and anion reagent by electrostatic self-assembly method. Negatively charged poly (vinylidene fluoride) (PVDF) dispersed with inorganic BaTiO3 nano-granules in organic solvent was using as anion reagent. The thickness of the 12-layer ferroelectric composite ultrathin films characterized by quartz crystal microbalance (QCM) is about 82nm, and there exists a nearly linear relationship between the thickness and layer number of ultrathin films. The results of SEM and XRD show that the composite ultrathin films are deposited on the quartz surface smoothly and densely with uniform distribution of BaTiO3 nano-granules, and excellent crystalline performance. The hysteresis loop of ferroelectric composite ultrathin films shows that the electric polarization of the composite ultrathin films is increased to 3μC/cm2.

参考文献

[1]Liu Z, Yuan R, Chai Y, et al. Sens. Actuators B Chem., 2008, 134(2): 625-631.
[2]Senthilkumar R, Sridevi K, Venkatesan J, et al. Ferroelectrics, 2005, 325(1): 121-130.
[3]Jayadevan K P, Tseng T Y. J. Mater. Sci. Mater. Electron., 2002, 13(8): 439-459.
[4]Tsutsumi N, Otsuji M. J. Appl. Phys., 2007, 102(10): 104101-1-4.
[5]Lazarev V V, Blinov L M, Palto S P, et al. Thin Solid Films, 2008, 516(24): 8905-8908.
[6]Alexe M, Hesse D. J. Mater. Sci., 2006, 41(1): 1-11.
[7]李金隆, 李言荣, 张 鹰, 等(LI Jin-Long, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19(5): 1207-1211.
[8]Park G T, Choi J J, Park C S, et al. Appl. Phys. Lett., 2004, 85(12): 2322-2324.
[9]Jiang S, Chen X D, Zhang L, et al. Thin Solid Films, 2003, 425(1/2): 117-120.
[10]Fujita S, Shiratori S. Nanotechnology, 2005, 16(9): 1821-1827.
[11]Serzawa T, Ohmori T,Akashi M. Polymer Journal, 2003, 35(10): 810-814.
[12]Zhang X, Wang Y, Chen X, et al. Mater. Lett., 2008, 62(10/11): 1613-1616.
[13]Mugnier E, Pasquet I, Barnabe A, et al. Thin Solid Films, 2005, 493(1/2): 49-53.
[14]Singh R S, Rangari V K, Sanagapalli S, et al. Sol. Energ. Mater. Sol. Cells, 2004, 82(1/2): 315-330.
[15]Wang J, Qi Y, Zhi Z, et al. Smart Mater. Struct., 2007, 16(6): 2673-2679.
[16]Sauerbrey G Z. Physics, 1959, 155(2): 206-222.
[17]Disawal S, Qiu J H, Elmore B B, et al. Colloids and Surfaces B, 2003, 32(2): 145-156.
[18]Calvin S, Luo S X, Caragianis B C, et al. Appl. Phys. Lett., 2005, 87(23): 233102-1-3.
[19]Zhong W L, Wang Y G, Zhang P L, et al. Phys. Rev. B, 1994, 50(2): 698-703.
文章导航

/