炭二氧化硅复合气凝胶的合成及结构分析
Synthesis and Structure of Carbon/Silica Hybrid Aerogels
Received date: 2008-10-07
Revised date: 2008-12-11
Online published: 2009-07-20
将二氧化硅溶胶和间苯二酚-甲醛溶液混合,经溶胶凝胶反应得到复合湿凝胶. 再经超临界干燥和炭化得到炭-二氧化硅复合气凝胶. 分别用氢氟酸刻蚀和空气烧蚀复合气凝胶中的二氧化硅和炭,得到结构完整的炭气凝胶和二氧化硅气凝胶. 复合湿凝胶经常压干燥、炭化和氢氟酸刻蚀能得到炭干凝胶. 利用透射电镜和低温氮气吸附对上述凝胶的微结构进行了表征. 结果表明:复合气凝胶中,炭和二氧化硅纳米网络各自连续并相互嵌套. 由于二氧化硅纳米网络的支撑作用,复合凝胶在超临界干燥和高温炭化过程中体积收缩减小,网络塌陷降低. 所得炭气凝胶具有高比表面(934m2/g)和高孔容(3.9cm3/g)的特点.
陈 亮 , 张 睿 , 龙东辉 , 凌立成 . 炭二氧化硅复合气凝胶的合成及结构分析[J]. 无机材料学报, 2009 , 24(4) : 690 -694 . DOI: 10.3724/SP.J.1077.2009.00690
Hybrid hydrogels were synthesized by sol-gel polymerization of resorcinol and formaldehyde added by colloidal silica solutions. Carbon/silica hybrid aerogels were prepared from the hydrogels by supercritical drying and carbonization. Carbon aerogels and silica aerogels were obtained by removing silica with HF etching and carbon with air burning from the hybrid aerogels respectively. Carbon xerogels were prepared by ambient drying, carbonization and HF etching from the hydrogels. The microstructures of the four kinds of gels were characterized by TEM and N2 adsorption. It is found that the carbon and silica frameworks are continuous and interpenetrated each other. The silica framework can improve the strength of hybrid gels, which can decrease the volume shrinkages by preventing collapse of the hybrid framework during supercritical drying and carbonization, resulting in carbon aerogels with high specific surface area of 934m2/g and large total pore volume of 3.9cm3/g.
Key words: aerogel; hybrid; pore microstructure
[1]Gesser H D, Goswami P C. Chemical Reviews, 1989, 89(4):765-768.
[2]Hench Larry L, West John K. Chemical Reviews,1990,90(1): 33-72.
[3]Pekala R W. Journal of Materials Science, 1989, 24(9): 3221-3228.
[4]Pekala R W, Kong F M. Polymer Preprints, 1989, 30(1): 221-224.
[5]Gross J, Fricke J. Journal of Non-Crystalline Solids, 1992, 145(1/2/3):217-222.
[6]Peri J B. Journal of Physics and Chemistry of Solids, 1966, 70(9):2937-2940.
[7]Shewale Poonam, Rao Venkateswara, Rao Parvathy. Applied Surface Science, 2008, 254(21): 6902-6907.
[8]Salim Nassreddine, Ali Karout, Lorraine Christ, et al. Applied Catalysis, 2008, 344(1): 70-77.
[9]Bhagat Sharad D, Kim YongHa, Ahn YoungSoo, et al. Applied Surface Science, 2007, 253(6): 3231-3236.
[10]徐国忠, 李贺军, 白瑞成, 等(XU Guo-Zhong, et al). 无机材料学报(Journal of Inorganic Materials),2006, 21(6): 1385-1390.
[11]Lee H J, Song J H, Kim J H. Materials Letters, 1998, 37(2): 197-200.
[12]张 睿,詹 亮,孟庆函,等. 新型炭材料,2004, 19(1):7-10.
[13]Liu Ning, Zhang Shu-Ting, Fu Ruo-Wen, et al. Carbon, 2006, 44(12): 2430-2436.
[14]Pekala R W, Gross J, Fricke J. Journal of Non-Crystalline Solids, 1995,188(1): 34-40.
[15]孟庆函, 刘 玲, 宋怀河, 等(MENG Qing-Han, et al). 无机材料学报(Journal of Inorganic Materials),2004, 19(3): 593-598.
[16]王万兵,张 睿,刘希邈,等. 新型炭材料,2007,22(1):65-69.
[16]Yang Chun-mo, Choi Woon-Hyuk, Na Byung-Ki, et al. Desalination, 2005, 174(2): 125-133.
/
〈 |
|
〉 |