研究论文

TiO2纳米管阵列薄膜光电协同降解亚甲基蓝的研究

  • 陈 怡 ,
  • 施利毅 ,
  • 袁 帅 ,
  • 吴 钧 ,
  • 张美红 ,
  • 方建慧
展开
  • 上海大学 1.纳米科学与技术研究中心, 2. 理学院, 上海 200444

收稿日期: 2008-10-15

  修回日期: 2008-12-08

  网络出版日期: 2009-07-20

Photoelectrocatalytic Degradation of Methylene Blue by TiO2 Nanotube
Array Prepared by Anodic Oxidation

  • CHEN Yi ,
  • SHI Li-Yi ,
  • YUAN Shuai ,
  • WU Jun ,
  • ZHANG Mei-Hong ,
  • FANG Jian-Hui
Expand
  • 1. NanoScience and Technology Research Center, Shanghai University, Shanghai 200444, China; 2. College of Science, Shanghai University, Shanghai 200444, China

Received date: 2008-10-15

  Revised date: 2008-12-08

  Online published: 2009-07-20

摘要

使用阳极氧化法制备了TiO2/Ti纳米管阵列薄膜材料. TiO2纳米管管孔分布均匀,管径约为80~90nm,平均管长约为1.8μm. 在400℃下煅烧2h后,TiO2纳米管阵列为锐钛矿型,并且结构保持良好,没有出现变形、剥落的现象. 以TiO2/Ti纳米管阵列薄膜材料为光催化剂,同时施加0~+3.0V范围内变化的电场,考察了外加电压对降解亚甲基蓝光电协同效率的影响. 结果表明在外加+1.4V电压的条件下,光电协同效率达到124%. TiO2纳米管阵列与基底Ti板结合牢固,多次重复使用后没有发现降解率的明显变化.

本文引用格式

陈 怡 , 施利毅 , 袁 帅 , 吴 钧 , 张美红 , 方建慧 . TiO2纳米管阵列薄膜光电协同降解亚甲基蓝的研究[J]. 无机材料学报, 2009 , 24(4) : 680 -684 . DOI: 10.3724/SP.J.1077.2009.00680

Abstract

TiO2 nanotube array material was prepared by anodic oxidation of a pure titanium sheet. The average length and the diameter of the nanotubes were 1.8μm and 80-90nm respectively. After calcination at 400℃ for 2h, the amorphous nanotube walls converted to anatase phase without distortion and collapse. The TiO2 nanotube array material was used as photocatalyst to degrade methylene blue solution under UV light irradiation and UV lightelectric field respectively. The synergetic effects of UV light and electric field on the degradation of methylene blue were investigated by changing the voltage from 0V to +3V. The highest synergetic efficiency of 124% is obtained under +1.4V. The degradation activity of the TiO2 nanotube array material used for several times decreases little, which reveals that the TiO2 nanotube array is adhered to the metal substrate stably.

参考文献

[1]Zhang T, Oyama T, Horikoshi S, et al. Sol. Energy Mater. Sol. Cells, 2002, 73(3):287-303.
[2]Shang J, Chai M, Zhu Y F. J. Solid State Chem., 2003, 174(1): 104-110.
[3]江 红, 王连军, 江 莞(JIANG Hong, et al).无机材料学报(Journal of Inorganic Materials), 2003,18(5):998-1004.
[4]何 俣,朱永法,喻 方,等(HE Yu, et al).无机材料学报(Journal of Inorganic Materials),2004,19(2):385-390.
[5]张剑平, 孙召梅, 施利毅,等(ZHANG Jian-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20(5):1243-
1249.
[6]陈 怡, 袁 帅, 施利毅, 等. 高等学校化学学报, 2008, 29(3): 554-558.
[7]李海玲, 王文静, 亢国虎, 等. 太阳能学报, 2006, 27(11): 1103-1107.
[8]Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995, 95(3): 735-758.
[9]Gong D, Grimes C A, Varghese O K, et al. J. Mater. Res., 2001, 16(12): 3331-3334.
[10]Liu Z Y, Zhang X T, Nishimoto S, et al. J.Phys.Chem.C, 2008, 112(1): 253-259.
[11]Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001, 293(13):269-271.
[12]桥本和仁, 藤岛昭主编,邱建荣,朱从善译. 图解光催化技术. 北京:科学出版社,2007: 12.
[13]吴 钧, 施利毅, 袁 帅,等.化学反应工程与工艺, 2008, 24(2): 147-152.
[14]Zhao X, Zhu Y F. Environ. Sci. Technol., 2006, 40(10): 3367-3372.
[15]Zhao X, Yao W Q, Wu Y, et al. J. Solid State Chem., 2006, 179(8): 2562-2570.
[16]Carneiro P A, Osugi M E, Sene J J, et al. Electrochim. Acta, 2004, 49(22/23): 3807-3820.
[17]黄金球,唐朝群,马新国, 等.催化学报, 2006, 27(9): 783-786.
[18]Quan X, Chen S, Su J, et al. Sep. Purif. Technol., 2004, 34(1): 73-79.
[19]Zanoni M V B, Sene J J, Anderson M A. J. Photoch. Photobio. A, 2003, 157(1): 55-63.
[20]Jorge S M A, Sene J J, Florentino A O. J. Photoch. Photobio. A, 2005, 174(1): 71-75.
[21]Sun C C, Chou T C. J. Mol. Catal. Achem., 2000, 151(1):133-145.
[22]Li J Q, Zheng L, Li L P. J. Hazard. Mater. B, 2007, 139(1): 72-78.

文章导航

/