制备了能用于切除关节腔滑膜的放射性硼酸镝锂(DyLB)玻璃微球, 通过体外试验和动物试验研究了DyLB玻璃微球的降解性和生物相容性. 实验结果表明:DyLB微球在SBF9模拟体液中发生非均匀性溶解, 浸泡7d后, Dy3+的溶出量低于原始玻璃组成中Dy元素总量的0.0026wt%, Li+的溶出量则超过Li元素总量的53wt%. 失重实验表明, DyLB微球具有部分生物可降解性, 对所研究的三个组成, 在SBF9中浸泡1d后, DyLB玻璃微球的总失重量约16%~43%; 浸泡7d后, 微球与SBF9模拟液反应达到平衡, 失重量达到25%~55%. 同时, DyLB微球具有良好的生物相容性, 微球植入小鼠体内2周后, 形貌发生变化并逐渐降解, 期间没有引起组织损伤或异常炎症反应; DyLB微球经中子激活, 活化后核纯度指标大于99.9%, 符合临床应用要求.
The radioactive dysprosium lithium borate glass (DyLB) microspheres used for synovectomy were prepared. The biodegradability and biocompatibility of theses DyLB microspheres were investigated by in-vitro and in-vivo test. The DyLB microspheres reacted nonuniformly in simulated body fluid (SBF9) with more than 53wt% of lithium being dissolved, whereas nearly all of the dysprosium (>99.997wt%) remained in the reacted microspheres, after being immersed in SBF9 at 37℃ for 7d. For three different compositions, the weight loss of DyLB microspheres was 16%-43% when they were immersed in SBF9 for 1d; After being immersed in SBF9 for 7d, the weight loss of these DyLB microspheres was up to (25%-55%), and the precipitationdissolution reaction reached equilibrium, indicating that the DyLB microspheres were partially biodegradable in SBF9. Furthermore, the DyLB microspheres had good biocompatibility, since no tissue damage or inflammation was detected after being implanted in the liver of rat for two weeks. After being neutron activation, the radionuclide purity of radioactive DyLB microspheres was over 99.9%, which can be used for radiation synovectomy treatment in clinic.
[1]Ansell B M, Crook A, Mallard J R. Ann. Rhum. Dis., 1963, 22(6): 435-439.
[2]Muirden K D, Peace G, Rogers K. Ann. Rheum. Dis., 1969, 28(6): 630-636.
[3]Deckart H, Tamaschke J, Ett S. Radiobiol Radiother, 1979, 20(3): 361-370.
[4]韩星海, 刘 彧, 孟济明. 中华风湿病学杂志, 2002, 6(4): 276-277.
[5]张晓东, 李文新, 闵小峰, 等. 同位素, 1999, 12(3): 140-145.
[6]汤立新, 陈安民. 医学综述, 2003, 9(12): 765-767.
[7]Ures M, Savio E, Malanga A, et al. BMC Nucl. Med., 2002, 2(1): 1-9.
[8]李 锐, 方勇飞, 郭燕丽. 中国医学影像技术, 2004, 20(5): 758-759.
[9]Conzone S D, Hemrick J G, Day D E. Glass Sci. Technol., 2001,74(2): 39-45.
[10]Conzone S D, Brown R F, Day D E, et al. J. Biomed. Mater. Res., 2002, 60(2): 260-268.
[11]Day D E, White J E, Brown R F. Glass Technol., 2003, 44(2): 75-81.
[12]李 跃. 医药世界, 2005, 7(7): 440-443.
[13]张彦梅, 江俊霞. 社区医学杂志, 2004, 2(3): 52-55.
[14]张 娟, 周 萘, 黄文旵, 等. 硅酸盐通报, 2007, 26(5): 883-886.
[15]余 静, 周 萘, 黄文旵, 等. 功能材料, 2005, 36(12): 1903-1905.
[16]余 静, 周 萘, 黄文旵. 建筑材料学报, 2005, 8(2): 211-214.
[17]Li R, Clark A E, Hench L L. J. Applied Biomater., 1991, 2(4): 231-239.
[18]Kokubo T. Biomaterials, 1991, 12(2): 155-163.
[19]Dibenedetto L J, Carmeron J A, Huang S I. Polymer Sci. and Tech., 1990, 8: 61-74.
[20]Ratner B D, Hoffman A S, Schoen F J. Biomaterial Science: An Introduction to Materials in Medicine. 2nd Ed., Orlando: Academic Press, 2004: 64-72
[21]宋 健. 生物医用材料. 天津:天津大学出版社, 2000.
[22]Weast Robert C. CRC handbook of chemistry and physics. Roca Raton: CRC Press, 1985.