研究论文

新型光催化剂 ZrW2O7(OH)2(H2O)2的光解水产氢产氧性能

  • 蒋 丽 ,
  • 袁 坚 ,
  • 上官文峰
展开
  • (上海交通大学 燃烧与环境技术研究中心, 上海 200240)

收稿日期: 2009-04-10

  修回日期: 2009-06-26

  网络出版日期: 2010-01-24

Novel Photocatalyst ZrW2O7(OH)2(H2O)2 for Photocatalytic H2 and O2 Evolution from Water Splitting

  • JIANG Li ,
  • YUAN Jian ,
  • SHANGGUAN Wen-Feng
Expand
  • (Research Center for Combustion and Environment Technology, Shanghai Jiao Tong University, Shanghai 200240, China)

Received date: 2009-04-10

  Revised date: 2009-06-26

  Online published: 2010-01-24

摘要

以水热反应法制备了ZrW2O7(OH)2(H2O)2 粉体, 利用TG-DTA、XRD、DRS和BET 等手段对其理化性能进行表征, 并考察了其在紫外光照射下分别以CH3OH 为电子给体和以AgNO3 为电子受体时的光解水产氢产氧性能. 结果表明:制备的样品为结晶良好且晶相单一的四方相 ZrW2O7(OH)2(H2O)2 粉体, 吸收边为310nm, 带隙值为3.9eV, 比表面积为 5.9m2/g. 在以 CH3OH 为电子给体的条件下, 0.3wt% Pt/ZrW2O7(OH)2(H2O)2 的光解水产氢平均速率为 3.7μmol/h, 以 AgNO3 为电子受体的条件下 ZrW2O7(OH)2(H2O)2 的产氧平均速率为 27.8μmol/h. 本研究表明, 包含 OH 基的 ZrW2O7(OH)2(H2O)2 具有光解水产氢产氧能力, 能带结构符合光解水要求, 是一种新型的光解水材料.

本文引用格式

蒋 丽 , 袁 坚 , 上官文峰 . 新型光催化剂 ZrW2O7(OH)2(H2O)2的光解水产氢产氧性能[J]. 无机材料学报, 2010 , 25(1) : 18 -22 . DOI: 10.3724/SP.J.1077.2010.00018

Abstract

ZrW2O7(OH)2(H2O)2 powder was prepared by a hydrothermal reaction method and its thermal decomposition property, crystal structure, photon absorption property and specific surface area were characterized by TG-DTA, XRD, DRS and BET, respectively. Its photocatalytic activity for H2 and O2 evolution from water splitting under UV light irradiation was examined in the presence of CH3OH as electron donor and AgNO3 as electron scavenger. The results show that ZrW2O7(OH)2(H2O)2 is crystallized well in tetragonal phase, with absorption edge of 310nm, band gap energy of 3.9eV, and specific surface area of 5.9m2/g. The average rate of H2 evolution over 0.3wt% Pt/ZrW2O7(OH)2(H2O)2 is 3.7μmol/h and the average rate of O2 evolution over ZrW2O7(OH)2(H2O)2 is 27.8μmol/h, respectively. It is concluded that the hydroxy group containing ZrW2O7(OH)2(H2O)2 has suitable band structure and possesses the photocatalytic ability to split water.

参考文献

[1]Fujishima A, Honda K. Nature, 1972, 238(5358): 37-38.
[2]Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253-278.
[3]Osterloh F E. Chem. Mater., 2008, 20(1): 35-54.
[4]Kudo A. Inter. J. Hydrog. Energy, 2006, 31(2): 197-202.
[5]Takata T, Tanaka A, Hara M, et al. Catal. Today, 1998, 44(1-4): 17-26.
[6]Sayama K, Arakawa H. J. Phys. Chem., 1993, 97(3): 531-533.
[7]Tang J W, Ye J H. J. Mater. Chem., 2005, 15(39): 4246-4251.
[8]Kameswari U, Sleight A W, Evans J S O. Inter. J. Inorg. Mater., 2000, 2(4): 333-337.
[9]Ouyang L H, Xu Y N, Ching W Y. Phys. Rev. B, 2002, 65(11):113110-1-4.
[10]Xing Q F, Xing X R, Yu R B, et al. J. Cryst. Growth, 2005, 283(1/2): 208-214.
[11]蒋 丽, 袁 坚, 陈铭夏, 等.分子催化, 2008, 22(Suppl.): MC-316.
[12]Jiang L, Shangguan W F. Proceedings of the 10th Cross Straits Symposium on Materials, Energy and Environmental Sciences. Kyushu University, Japan, 2008: EY-1.
[13]蒋 丽, 袁 坚, 陈铭夏, 等. 功能材料, 2009, 5(40): 728-731.
[14]Dadachov M S, Lambrecht R M. J. Mater. Chem., 1997, 7(9): 1867-1870.
[15]Wakamura M, Hashimoto K, Watanabe T. Langmuir, 2003, 19(8): 3428-3431.
[16]Lei Z B, Ma G J, Liu M Y, et al. J. Catal., 2006, 237(2): 322-329.
[17]Shangguan W, Yoshida A. Inter. J. Hydrog. Energy, 1999, 24(5): 425-431.
[18]Finlayson A P, Tsaneva V N, Lyons L, et al. Phys. Stat. Sol.(a), 2006, 203(2): 327-335.
[19]上官文峰(SHANGGUAN Wen-Feng). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2001, 17(5): 619-626.
[20]Maeda K, Domen K. J. Phys. Chem. C, 2007, 111(22): 7851-7861.
[21]Xing X R, Xing Q F, Yu R B, et al. Physica B, 2006, 371(1): 81-84.
[22]Tang J W, Zou Z G, Ye J H. J. Phys. Chem. B, 2003, 107(51): 14265-14269.
[23]邢精成, 王文邓, 卞建江, 等(XING Jin-Cheng, et al). 无机材料学报(Journal of Inorganic Materials), 2007, 22(6):1075-1078.
[24]Lin X P, Huang F Q, Wang W D, et al. Appl. Catal. A, 2006, 313(2): 218-223.
文章导航

/