研究论文

晶粒尺寸对FeS2薄膜微应变及光吸收特性的影响

  • 刘艳辉 ,
  • 汪洋 ,
  • 孟亮
展开
  • 1. 浙江大学材料与化学工程学院, 杭州 310027; 2. 兰州交通大学光电技术与智能控制教育部重点实验室, 兰州 730070

收稿日期: 2006-01-23

  修回日期: 2006-03-20

  网络出版日期: 2007-01-20

Effects of Grain Sizes on the Behaviors of Microstrain and Optical Absorption for the FeS2 Films

  • LIU Yan-Hui ,
  • WANG Yang ,
  • MENG Liang
Expand
  • 1. College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou 310027, China; 2. Key Laboratory of Opto-Electronic Technology and Intelligent Control Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China

Received date: 2006-01-23

  Revised date: 2006-03-20

  Online published: 2007-01-20

摘要

采用不同厚度的Fe膜在673K热硫化20h 制备出具有不同晶粒尺寸的FeS2薄膜, 分析并测定了薄膜组织结构、微应变及光吸收性能. 结果表明, Fe膜硫化形成的FeS2薄膜厚度在120~550nm范围内变化时, 可导致平均晶粒尺寸在40~80nm之间变化. FeS2晶粒尺寸的变化造成了晶体面缺陷密度的变化, 可引起微观内应力水平、缺陷能级分布和晶界势垒高度的变化, 进而使得薄膜的微应变、点阵畸变度、光吸收系数及禁带宽度等物理特性随晶粒尺寸的增加而降低.

本文引用格式

刘艳辉 , 汪洋 , 孟亮 . 晶粒尺寸对FeS2薄膜微应变及光吸收特性的影响[J]. 无机材料学报, 2007 , 22(1) : 143 -147 . DOI: 10.3724/SP.J.1077.2007.00143

Abstract

FeS2 thin films with different grain sizes were synthesized by the sulfuration reaction of Fe films with different thickness at 673K for 20h. The microstructure, microstress and optical absorption of the films were investigated. The average grain size of the FeS2 films changes from 40nm to 80nm when the film thickness changes from 120nm to 550nm. The internal microstrain, lattice distortion, absorption coefficient and energy gap decrease with the grain size increasing. The mechanism responsible for the result can be attributed to the variation of
the degree of microstress, the distribution of energy level of crystal defect
states and the height of grain boundary barrier due to the change of the
crystal planar defects density with the grain size changing.

参考文献

[1] Ares J R, Pascual A, Ferre I J, et al. Thin Solid Films, 2005, 480-481: 477--481.
[2] Liu Y H, Meng L, Zhang L. Thin Solid Films, 2005, 479 (1-2): 83--88.
[3] Ares J R, Pascual A, Ferrer I J, et al. Thin Solid Films, 2004, 451-452: 233--236.
[4] Ares J R, Pascual A, Ferrer I J, et al. Thin Solid Films, 2004, 450: 207--210.
[5] Ouertanil B, Ouerfelli J, Saadoun M. Mater. Lett., 2005, 59 (6): 734--739.
[6] Gomes A, Pereira MI da S, Mendonca M H. Electrochim. Acta., 2004, 49 (13): 2155--2165.
[7] Meng L, Liu Y H, Tian L. Mater. Res. Bull., 2003, 38 (6): 941--948.
[8] Reijnen L, Meester B, Goossens A. J. Electrochem. Soc., 2000, 147 (5): 1803--1806.
[9] 刘艳辉, 孟亮, 张秀娟. 材料研究学报, 2004, 18 (4): 373--379.
[10] 吴荣, 郑毓峰, 张校刚(WU Rong, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19 (4): 917--920.
[11] Hamdadou N, Khelil A, Bernede J C. Mater. Chem. Phy., 2003, 78 (3): 591--601.
[12] Heras C de las. Lifante G. J. Appl. Phys., 1997, 82 (10): 5132--5137.
[13] Krishna M G, Bhattacharya A K. Mater. Sci. Eng. B, 1997, 49 (2): 166--171.
[14] Enriquez J P, Mathew X. Sol. Energy Mater. Sol. Cells, 2003, 76 (3): 313--322.
[15] Kadam L D, Patil P S. Mater. Chem. Phy., 2001, 68 (1-3): 225--232.
[16] Tyagi P, Vedeshwar A G, Mehra N C. Physica B, 2001, 304: 166--174.
[17] Ferrer I J, S\acuteanchez C. J. Appl. Phys, 1991, 70 (5): 2641--2647.
[18] Heras C de las, Martin de Vidales J L, Ferrer I J. J. Mater. Res, 1996, 11 (1): 211--219.
[19] Li H Q, Ebrahimi F. Acta. Mater, 2003, 51 (13): 3905--3913.
[20] Kale S S, Lokhande C D. Mater. Chem. Phy., 2000, 62 (2): 103--108.
[21] Kale R B, Lokhande C D. Appl. Surf. Sci., 2004, 223 (4): 343--351.
文章导航

/