研究论文

磷酸镍基类分子筛材料的吸附性质研究

  • 解丽丽 ,
  • 胡娟 ,
  • 吴春冬
展开
  • 1. 上海第二工业大学环境工程系, 上海 201209; 2. 中国科学院上海硅酸盐研究所高性能陶瓷和超微结构国家重点实验室, 上海 200050

收稿日期: 2006-02-27

  修回日期: 2006-07-13

  网络出版日期: 2007-01-20

Adsorption Properties of the Nickel-phosphate-basis Molecular Sieves

  • XIE Li-Li ,
  • HU Juan ,
  • WU Chun-Dong
Expand
  • 1. Department of Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China; 2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2006-02-27

  Revised date: 2006-07-13

  Online published: 2007-01-20

摘要

主要研究了磷酸镍基类分子筛材料VSB-1和CoVSB-1对H2和H2NCH2CH2NH2的吸附性质. VSB-1和CoVSB-1对H2的吸附是一种超临界物理吸附. VSB-1和CoVSB-1H2NCH2CH2NH2的吸附量比对H2O分子、C2H5OH分子以及其他有机胺蒸汽分子的吸附量大, 分别是19.7wt%和24.3wt%, 通过XRD、FT-IR和UV-Vis等光谱表征证实了VSB-1和CoVSB-1 H2NCH2CH2NH2的化学吸附机理, 即H2NCH2CH2NH2与VSB-1和CoVSB-1骨架结构中的过渡金属Ni和Co离子活性位的螯合作用.

关键词: VSB-1; CoVSB-1; 分子筛; 吸附

本文引用格式

解丽丽 , 胡娟 , 吴春冬 . 磷酸镍基类分子筛材料的吸附性质研究[J]. 无机材料学报, 2007 , 22(1) : 128 -132 . DOI: 10.3724/SP.J.1077.2007.00128

Abstract

The adsorption of H2 and H2NCH2CH2NH2 on the nickel-phosphate-basis
molecular sieves VSB-1 and CoVSB-1 was studied. The adsorption of H2 is a supercritical physisorption. The adsorption quantity of H2NCH2CH2NH2 on VSB-1 and CoVSB-1 is larger than that of H2O, C2H5 OH and other vapor of organicamines. VSB-1 and CoVSB-1 can adsorb 19.7wt% and 24.3wt% of H2NCH2CH2NH2 respectively. The chemisorption mechanism of H2NCH2CH2NH2 on VSB-1 and CoVSB-1 was verified by using XRD, FT-IR and UV-Vis characterization. The large adsorption quantity of H2NCH2CH2NH2 is caused by the chelation between H2NCH2CH2NH2 and the active sites of Ni and Co
in the frameworks of VSB-1 and CoVSB-1.

参考文献

[1] Barrer R M. Brit. Chem. Engl., 1959, 4: 267--279.
[2] Davis M E. Nature, 2002, 417: 813-821.
[3] Parrillo D J, Adamo A T, Kokotailo G T, et al. Appl. Catal., 1990, 67: 107--118. [4] Ghosh A K, Curthoys G. J. Chem. Soc., Faraday Trans. 1, 1984, 80: 99--109.
[5] Docquir F, Toufar H, Su B L. Langmuir, 2001, 17: 6282--6288.
[6] Docquir F, Norberg V, Toufar H, et al. Langmuir, 2002, 18: 5963--5966.
[7] Guillou N, Gao Q, Nogues M, et al. C. R. Acad. Sci. Paris II C 2, 1999. 387--392.
[8] 王秀丽, 高秋明(WANG Xiu-Li, et al). 无机材料学报(Journal of Inorganic Materials), 2005, 20 (3): 699--705.
[9] Forster P M, Eckert J, Chang J S, et al. J. Am. Chem. Soc., 2003, 125: 1309--1312.
[10] Xie L, Gao Q, Su X, et al. Micropor. Mesopor. Mater., 2004, 75: 135--141.
[11] Zhou Y, Feng K, Sun Y, et al. Chem. Phys. Letters, 2003, 380: 526--529.
[12] 周理, 吕昌忠, 王怡林, 等. 化学进展, 1999, 11: 221--226.
[13] Bennett A M A, Foulds G A, Thornton D A. Spectrochim. Acta, 1989, 45A: 219. [14] 吴瑾光. 科学技术文献出版社, 下卷, 1994. 281--284.
[15] Lever A B P. Inorganic electronic spectroscopy, 2nd ed.; Studies in
physical theoretical chemistry, Vol. 33, Elsevier, Amsterdam, 1984. 463--510.
[16] Xiong J M, Ding Y J, Zhu H, et al. J. Phys. Chem. B, 2003, 107: 1366--1369.
文章导航

/