研究论文

Bi2V 0.9 Cu 0.1-x Sn x O 5.5-δ 氧离子导体的烧结行为、微结构与输运性能研究

  • 吴修胜 ,
  • 方曙民 ,
  • 江国顺 ,
  • 陈初升 ,
  • 刘 卫
展开
  • 中国科学技术大学材料科学与工程系先进功能材料与器件实验室, 合肥 230026

收稿日期: 2005-12-26

  修回日期: 2006-03-31

  网络出版日期: 2006-11-20

Sintering Behavior, Microstructure and Transport Properties of Bi2V0.9Cu0.1-x SnxO 5.5-δ Oxygen-ion Conductor

  • WU Xiu-Sheng ,
  • FANG Shu-Min ,
  • JIANG Guo-Shun ,
  • CHEN Chu-Sheng ,
  • LIU Wei
Expand
  • Laboratory of Advanced Functional Materials and Devices,
    Department of Materials Science and Engineering, University of Science and
    Technology of China, Hefei 230026, China

Received date: 2005-12-26

  Revised date: 2006-03-31

  Online published: 2006-11-20

摘要

采用固相反应法合成了Bi 2 V 0.9 Cu 0.1-x Sn x O 5.5-δ (0≤ x≤0.75)系列化合物. X-ray粉末衍射分析表明所制样品均是四方γ相. 实验研究表明: Sn的掺入未能进一步改善体系的电学性质, 但掺Sn有利于优化材料的微结构及材料力学性能的提高; 氧渗透测量数据分析得到Bi 2 V 0.9 Cu 0.05 Sn 0.05 O 5.5-δ陶瓷致密膜中氧的渗透输运过程主要是由表面氧交换控制的.

本文引用格式

吴修胜 , 方曙民 , 江国顺 , 陈初升 , 刘 卫 . Bi2V 0.9 Cu 0.1-x Sn x O 5.5-δ 氧离子导体的烧结行为、微结构与输运性能研究[J]. 无机材料学报, 2006 , 21(6) : 1423 -1428 . DOI: 10.3724/SP.J.1077.2006.01423

Abstract

The samples of Bi 2 V 0.9 Cu 0.1-x Sn x O 5.5-δ (0≤ x ≤0.75) were prepared by solid-state reaction. Room temperature powder X-ray diffraction (XRD) indicates that the synthesized compounds present the tetragonal γ-phase structure. The measurement results show that doped-Sn benefits to the control of microstructure of the sample and favor its mechanic property though it doesn’t further improve the electrical conductivity of the system. The oxygen permeation measurement result indicates oxygen transport in Bi 2 V 0.9 Cu 0.1-x Sn x O 5.5-δ system is controlled mainly by the process of surface oxygen exchange.

参考文献

[1] Abraham F, Debreuille-Gresse, Mairesse M F, et al. Solid State Ionics, 1988, 28-30: 529--532.
[2] Abraham F, Bovin J C, Mairesse G, et al. Solid State Ionics, 1990, 40-41: 934--937.
[3] Yan J, Greenblatt M. Solid State Ionics, 1995, 81: 225--233.
[4] Boivin J C, Pirovano C, Nowogrocki G, et al. Chem. Mater., 1998, 10: 2870--2888.
[5] Boivin J C, Pirovano C, Nowogrocki G, et al. Solid State Ionics, 1998, 113-115: 639--651.
[6] Watanabe A, Das K. J Solid State Chem, 2002, 163: 224--230.
[7] Steil M C, Ratajczk F, Capoen E, et al. Solid State Ionics, 2005, 176: 2305--2312.
[8] Chen C S, Zhang Z P, Jiang G S, et al. Chem. Mater., 2001, 13: 2797--2800.
[9] Simner S P, Suarez Sandoval, et al. J. Am. Ceram. Soc., 1997, 80 (10): 2563--2568.
[10] Steil M C, Fouletier J, Kleitza M, et al. J. Eur. Ceram. Soc., 1999, 19: 815--818.
[11] Pirovano C, Steil M C, Capoen E, et al. Solid State Ionics, 2005, 176: 2079--2083.
[12] Dygas R, Kurek P, Breiter M W. Electrochimica Acta, 1995, 40: 1545--1550.
[13] 黄端平, 徐庆, 陈文, 等(HUANG Duan-Ping, { et al).?
无机材料学报(Journal of Inorganic Materials), 2005, 20 (1): 133--138.
[14] 樊传刚, 刘卫, 江国顺, 等(FAN Chuan-Gang, { et al). ?
无机材料学报(Journal of Inorganic Materials), 2004, 19 (1): 121--126.
文章导航

/