研究论文

SiCp/Al复合材料的SPS烧结及热物理性能研究

  • 顾晓峰 ,
  • 张联盟 ,
  • 杨梅君 ,
  • 张东明
展开
  • 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070

收稿日期: 2005-11-07

  修回日期: 2005-12-26

  网络出版日期: 2006-11-20

Fabrication and Thermophysical Properties of SiCp/Al Metal-matrix Composites by SPS

  • GU Xiao-Feng ,
  • ZHANG Lian-Meng ,
  • YANG Mei-Jun ,
  • ZHANG Dong-Ming
Expand
  • State Key Laboratory of Advanced Technology for Materials ynthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Received date: 2005-11-07

  Revised date: 2005-12-26

  Online published: 2006-11-20

摘要

采用纯粉末, 通过SPS烧结制备了组织均匀、致密且体积分数高的SiCp/Al电子封装材料. 通过对SPS烧结现象的研究, 认为该复合材料的SPS烧结过程属于反应性烧结, 大部分收缩在极短时间内完成; 另外对SiC体积分数和SiC颗粒尺寸对热导率、热膨胀系数的影响进行了研究, 发现SiC体积分数越高, 复合材料的热导率和热膨胀系数越低; SiC颗粒粒径增大, 复合材料的热导率增高, 而热膨胀系数减小.

本文引用格式

顾晓峰 , 张联盟 , 杨梅君 , 张东明 . SiCp/Al复合材料的SPS烧结及热物理性能研究[J]. 无机材料学报, 2006 , 21(6) : 1405 -1410 . DOI: 10.3724/SP.J.1077.2006.01405

Abstract

SiC particles, pure aluminum powder and silicon powder were applied to prepare SiC particles reinforced Al-matrix composites for electronic packaging application. Al-matrix composites reinforced with SiC particles were fabricated by SPS. The composites were dense and SiC particles distributed homogenously in Al-matrix. According to the investigation of SPS process, the sintering process of the composite, belongs to a reactive sintering, the majority of sintering shrinkage can be finished in a short period. Effects of SiC volume fraction and particles sizes
on thermal conductivity and coefficient of thermal expansion were investigated. The results indicate that thermal conductivity and coefficient of thermal expansion decrease with the increase of SiC volume fraction, and thermal
conductivity increases but coefficient of thermal expansion decreases with the increase of SiC particles sizes.

参考文献

[1] Zweben C. JOM, 1992, 44 (7): 15--23.
[2] Lee HYO S, Jeon Kyung Y, Kim Hee Y, et al. J Mater Sci., 2000, 35: 6231--6236.
[3] 张崎. 微电子技术, 1999, 27 (2): 30--34.
[4] Lee H S, Hong S H. Materials Science and Technology, 2003, 19 (8): 1057--1064.
[5] Hwu Boq-Kong, Lin Su-Jien, Jahn Min-Ten. Materials Science & Engineering A, 1996, 207: 135--141.
[6] Urquhart A W. Materials Science & Engineering A, 1991, 144: 75--82.
[7] Hemambar C, Rao B S, Jayaram V. Materials Manufacturing Processes, 2001, 16 (60): 779--788.
[8] Johnson D. Lynn. Ceramics International, 1991, 17: 295--300.
[9] Tokita M. Materials Science Forum, 1999, 308-311: 83--88.
[10] 尾崎公洋. Journal of the Japan Society of Powder and Powder Metallurgy, 2000, 47 (3): 293--297.
[11] Laurent V, Chatain D, Eustathopoulos N. Materials Science and Engineering A, 1991, 135: 89--94.
[12] 武高辉, 张强, 姜龙涛, 等, 电子元件与材料, 2003, 22 (6): 27--29.
[13] Chen Liang-Guang, Shue Kung-Hsien,Chang Shou-Yi, et al. J. Mater. Re., 2002, 17 (2): 376--385.
[14] Xu Y, Tanaka Y. Journal of Applied Physics, 2004, 95 (2): 722--726.
[15] Elomari S, Skibo M D, A. Sundarrajan, et al. Composites Science and Technology, 1998, 58: 369--376.
[16] Elomari S, Boukhili R, Marchi C San, et al. Journal of Materials Science, 1997, 32 (8): 2131--2140.
[17] Shen Y L, Needleman A, Suresh S. Metallurgical and Materials Transactions, 1994, 25A: 840--847.
[18] 张建云, 华小珍, 周贤良, 等. 电子元件与材料, 2002, 21 (2): 8--9.
文章导航

/