研究了MnOx活性层焙烧温度对Ti/SnO2+Sb2O3/MnOx电极性能的影响. 用XRD、SEM对电极活性层的结构、形貌进行了表征, 通过极化曲线和循环伏安曲线研究了电极在25℃1.0mol/L H2SO4溶液中的电催化活性, 并应用阳极快速寿命检测法测定了电极寿命. 结果表明: 焙烧温度为200℃时, 只有MnO2生成; 焙烧温度在300和400℃之间时, 同时有Mn2O3和MnO2晶体生成, 即在该温度范围内, Mn2O3和MnO2共存; 焙烧温度高于450℃时, 在实验条件下, 只有Mn2O3的衍射峰. 焙烧温度对电极电催化活性和电极寿命有显著的影响, Mn2O3和MnO2共存时电极具有较低的析氧电位. 焙烧温度为400℃时制备的电极电催化活性较高, 快速寿命检测法测得其电极寿命达39h, 具有良好的稳定性.
MnOx coatings deposited on a Ti/SnO2+Sb2O3 were prepared by the thermal decomposition of Mn(NO3)2. Surface morphology and microstructure of the coating were investigated by X-ray diffraction and scanning electron microscopy. The electrocatalytic activity of the anodes was assessed by polarization curves and voltammetric charge at 25C and 1.0mol/L in aqueous H2SO4, and accelerated life tests were performed at 60C and 1.0mol/L in aqueous H2SO4 with an anodic current density of 4.0A/cm2. The aim of this work was to prepare anodes based on ternary oxides showing high stability and electro-catalytic activity in acid solution. The XRD analysis reveals that MnO2 is formed at 200℃, after that, MnO2 and Mn2O3 coexist between 300℃ and 400℃ and above 450℃ main composition is Mn2O3. It is suggested that calcination temperatures affect the electro-catalytic activity and the lifetime of the anodes. The anode possesses relatively low overpotential, when the coexistence of
MnO2 and Mn2O3. The Ti/SnO2+Sb2O3/MnOx electrode, the MnOx coatings prepared at 400℃, exhibits excellent electrocatalytic activity and higher coating stability with accelerated life of 39h.
[1] Mottram Couper A, Derek Pletcher, Frank C Walsh. Chem. Rev., 1990, 90(5): 837--865.
[2] Kristof Ianos, Szilagyi Tamas, Horvath Erzsebet. Thermochimica Acta, 2004, 413(1--2): 93--99.
[3] 王雅琼, 童宏扬, 许文林, 等(Wang Yaqiong, et al). 无机材料学报(Journal of Inorganic Materials), 2004, 19(6): 1307--1312.
[4] Masayuki morita, Chiaki Iwakura, Hideo Tamura. Electrochim. Acta, 1979, 24: 357--362.
[5] 梁镇海, 王森, 孙彦平, 等(Liang Zhenhai, et al). 化工冶金(Engineering Chemistry \& Metallurgy), 1995, 16(2): 139--142.
[6] 梁镇海, 王森, 孙彦平, 等(Liang Zhenhai et al). 稀有金属材料与工程, 1995, 24(4): 46--48.
[7] 王雅琼,童宏扬,许文林(Wang Yaqiong, et al). 无机材料学报(Journal of Inorganic Materials), 2003, 18(5): 1033--1038.
[8] 胡吉明,吴继勋,孟惠民, 等(Hu Jiming, et al). 表面技术(Surface Technology), 1999, 28(5): 1--3.
[9] Masayuki morita, Chiaki Iwakura, Hideo Tamura. Electrochim. Acta, 1979, 24(4): 357--362.
[10] 于德龙(Yu Delong). 材料保护(Material Protection), 1995, 28(3): 12--15.
[11] Grupioni A A F, Arashiro E, Lassali T A F. Electrochim. Acta, 2002, 48(4): 407--418.
[12] Trasatti S. Electrochim. Acta, 1991, 36(2): 225--241.
[13] Terezo A J, Pereira E C. Electrochim. Acta, 2000, 45(25--26): 4351--4358.
[14] 王雅琼, 童宏扬, 许文林(Wang Yaqiong, et al). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2004, 33(9): 976--979.