研究论文

层状 K-Fe-Ti金属氧化物制备及光催化性能研究

  • 李群伟 ,
  • 桑丽霞 ,
  • 胥利先 ,
  • 马重芳 ,
  • 孙继红
展开
  • 1. 北京工业大学 传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室, 北京 100022; 2. 北京工业大学 环境与能源工程学院化工化学系, 北京 100022

收稿日期: 2005-09-19

  修回日期: 2005-12-26

  网络出版日期: 2006-09-20

Preparation and Photocatalytic Properties of Layered K-Fe-Ti Metal Oxide

  • LI Qun-Wei ,
  • SANG Li-Xia ,
  • XU Li-Xian ,
  • MA Chong-Fang ,
  • SUN Ji-Hong
Expand
  • 1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, Beijing 100022, China; 2. Department of Chemistry and Chemical Engineering, Beijing University of Technology, College of Energy and Environmental Engineering, Beijing 100022, China

Received date: 2005-09-19

  Revised date: 2005-12-26

  Online published: 2006-09-20

摘要

以KNO3、Fe(NO3)3·9H2O、TiO2为原料, 通过固相反应, 制备出一种新型的光催化材料K-Fe-Ti层状金属氧化物, 通过XRD、SEM以及TEM等分析表征, 考察了不同配比, 不同反应温度对产物结构和晶型的影响, 发现配比为K:Fe:Ti=0.4:0.5:1.3(摩尔比)在1000℃反应温度下合成的催化剂结晶度和纯度都是最高的. 并初探了这种新型层状金属氧化物在紫外光照射下的光催化制氢反应性能,产氢速率达到338.4μmol/h, 表明具有较高的光催化活性, 同时表现出显著的可见光吸收特性, 是一种具有潜在应用前景的新型光催化材料.

本文引用格式

李群伟 , 桑丽霞 , 胥利先 , 马重芳 , 孙继红 . 层状 K-Fe-Ti金属氧化物制备及光催化性能研究[J]. 无机材料学报, 2006 , 21(5) : 1263 -1267 . DOI: 10.3724/SP.J.1077.2006.01263

Abstract

Layered K-Fe-Ti metal oxide, a new kind of photocatalyst was obtained via a solid-state reaction route with the mixture of KNO3, Fe(NO3)3·9H2O, TiO2. The effects of preparing parameters such as material ratio and reaction temperature etc, on the structure characteristics and crystal morphology
were investigated by using XRD, SEM and TEM technology. Meanwhile, under UV light irradiation, the native photocatalyst was found to evolve H2 from pure water. The result indicates that not only the photocatalyst prepared has high photocatalytic activity, but aslo its visible light absorption is notable with comparison of that by using market TiO2.

参考文献

[1] Fujishima A, Honda K. Nature, 1972, 238: 37--38.
[2] Linsebigler A L, Lu G, Yates J T. Chem. Rev., 1995, 95: 735--758.
[3] Avudaithai M, Kutty T R N. Materials Research Bulletin, 1989, 24: 1163--1170.
[4] Karakitson K E, Verykios X E. Journal of Physical Chemistry, 1993, 97: 1184--1189.
[5] Luo H M, Takata T, Lee Y, et al. Chemistry of Materials, 2004, 16: 846--849.
[6] Sayama K, Arakawa H. Journal of Chemical Society, 1997, 93 (8): 1647--1654.
[7] Ashokkumar M. International Journal of Hydrogen Energy, 1998, 23 (6): 427--438.
[8] Moon S C, Mametsuka H, Suzuki E, et al. Catalysis Today, 1998, 45: 74--79.
[9] Moon S C, Mametsuka H, Tabata S, et al. Catalysis Today, 2000, 58: 125--132.
[10] Yin S, Wu J H, Aki M, et al. International Journal of Inorganic Materials, 2000, 2: 325--331.
[11] Asahi R, Ohwaki T, Aoki K, et al. Science, 2001, 293: 269--271.
[12] Li X, Li F. Environ Sci Technol, 2001, 35: 2381--2387.
[13] Khan S U M, Al- Shahry M, Ingler Jr W B. Science, 2002, 297: 2243--2245.
[14] Ohno T, Mitsui T. Chem Lett, 2003, 32: 364--365.
[15] 杨亚辉, 陈启元, 尹周澜, 等. 化学进展, 2005, 17 (4): 631--642.
[16] Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114: 10834--10843.
[17] O’Brien S, Keates J M, Barlow S, et al. Chem. Mater, 1998, 10: 4088--4099.
[18] Grouli D, Mercey C, Raveau B, et al. Journal of Solid Chemistry, 1980, 32: 289--296.
[19] 谢鲜梅, 姚以朝, 刘晋华. 太原工业大学学报, 1991, 22 (3): 51--55.
[20] Tsuyoshi T, Akira T, Michikazu H, et al. Catalysis Today, 1998, 44, 17--26.
文章导航

/