研究论文

NaY/MCM-48复合分子筛的合成与表征

  • 李永昕 ,
  • 张艳华 ,
  • 薛冰
展开
  • 1. 江苏工业学院化工系, 常州 213016;
    2. 天津大学材料科学与工程学院, 天津 300072

收稿日期: 2005-09-16

  修回日期: 2005-11-19

  网络出版日期: 2006-09-20

Synthesis and Characterization of NaY/MCM-48 Composite Molecular Sieve

  • LI Yong-Xin ,
  • ZHANG Yan-Hua ,
  • XUE Bing
Expand
  • 1. Department of Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213016, China; 2. School of Material Science and Engineering, Tianjin University, Tianjin 300072, China

Received date: 2005-09-16

  Revised date: 2005-11-19

  Online published: 2006-09-20

摘要

以微孔分子筛NaY为内核, 合成一种中微孔复合分子筛NaY/MCM-48. 通过XRD、SEM、TEM、IR、N_2吸附脱附和TPD等手段对复合材料进行了表征, 此外对复合材料的水热稳定性进行了考察. 研究结果表明, 复合材料同时具有中孔分子筛MCM-48和微孔NaY型沸石的特点, 并且和纯MCM-48分子筛相比孔壁增厚, 孔径变大; 与纯中孔分子筛MCM-48相比, 复合分子筛的酸性明显增强, 并且水热稳定性提高. DFT计算其孔径分布主要集中于1.2和3.2nm.

本文引用格式

李永昕 , 张艳华 , 薛冰 . NaY/MCM-48复合分子筛的合成与表征[J]. 无机材料学报, 2006 , 21(5) : 1209 -1216 . DOI: 10.3724/SP.J.1077.2006.01209

Abstract

A new material NaY/MCM-48 composite molecular sieve was prepared with NaY-zeolite as the inner core. The synthesized composite sample was characterized by XRD, SEM, TEM, IR, N 2 adsorption/desorption method and TPD. In addition, it’s hydrothermal stability was studied. The results show that the composite material has the properties of both mesoporous MCM-48 and the microporous NaY. The composite molecular sieve has thicker pore wall, larger pore size, stronger acid strength and higher hydrothermal stability than pure mesoporous molecular sieve MCM-48. The DFT pore diameter is mainly located at 1.2nm and 3.2nm.

参考文献

[1] Beck J S, Vartuli J C, Roth W J, et al. J. Am. Chem. Soc., 1992, 114(27): 10834--10843.
[2] 申宝剑, 黄海燕, 徐春明, 等. 化学学报. 2003, 61(12): 1904--1910.
[3] Kresge C T, Leonowicz M E, Roth W J, et al. Nature, 1992, 359 (6397): 710--712.
[4] Ryoo R, Jun J. J. Phys. Chem. B, 1997, 101(3): 317--320.
[5] Xiao F S, Han Y, Yu Y, et al. J. Am. Chem. Soc., 2002, 124(6): 888--889.
[6] Huang L M, Guo W P, Deng P, et al. J. Phys. Chem. B, 2000, 104(13): 2817--2823.
[7] Kloetstra K R, Zandbergen H W, Jansen J C, et al. Microporous Mater., 1996, 6(5--6): 287--293.
[8] Karlsson A, Stocker M, Schmidt R. Microporous Mesoporous Mater., 1999, 27(2--3): 181--192.
[9] Poladi R H, Landry C C. J. Solid. State Chem., 2002, 167(2): 363--369.
[10] 李玉平, 李香兰, 张瑛, 等. 燃料化学学报, 2002, 30(2): 162--166.
[11] 黄海燕, 申宝剑, 徐春明, 等. 化学学报, 2002, 60(7): 1350--1352.
[12] 郭万平, 黄立民, 陈海鹰, 等. 高等学校化学学报, 1999, 20(3): 356--358.
[13] Guo W P, Huang L M, Deng P. Microporous Mesoporous Mater., 2001, 44--45: 427--434.
[14] 张晔, 吴东, 孙玉罕, 等. 燃料化学学报. 2001, 29: 28--29.
[15] Liu Y, Zhang W Z, Pinnavaia T J. J. Am. Chem. Soc., 2001, 123(21): 5014--5021.
[16] 万克树, 刘茜, 张存满(WAN Ke-shu, et al). 无机材料学报
(Journal of Inorganic Materials), 2003, 18(5): 1097--1101.
[17] 王亚军, 唐颐, 王星东, 等. 高等学校化学学报, 2000, 21(7): 1013--1015.
[18] 王姗, 窦志荣, 李玉平 ,等. 太原理工大学学报, 2005, 36(3): 273--275.
[19] Matsumoto A, Tsutsumi K, Schumacher K, et al. Langmuir, 2002, 18: 4014--4019.
文章导航

/