研究论文

C/SiC复合材料等温化学气相浸渗过程的数值模拟研究

  • 魏玺 ,
  • 成来飞 ,
  • 张立同 ,
  • 徐永东
展开
  • 西北工业大学超高温结构复合材料国防科技重点实验室, 西安 710072

收稿日期: 2005-09-02

  修回日期: 2005-11-10

  网络出版日期: 2006-09-20

Numerical Simulation of Isothermal Chemical Vapor Infiltration
Process for Fabrication of C/SiC Composites

  • WEI Xi ,
  • CHENG Lai-Fei ,
  • ZHANG Li-Tong ,
  • XU Yong-Dong
Expand
  • National Key Laboratory of Thermostructural Composite Materials,
    Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2005-09-02

  Revised date: 2005-11-10

  Online published: 2006-09-20

摘要

根据C/SiC复合材料的
结构以及等温化学气相浸渗法的工艺特点, 建立了ICVI过程中C纤维预制体
结构变化的多尺度孔隙模型和C/SiC复合材料ICVI致密化过程的数学模型. 利用
该模型对ICVI法制备C/SiC复合材料进行了数值计算和分析. 模拟结果与实验结
果呈现出相同的规律并且两者之间误差较小, 表明本文所建立的模型可以很好
地描述C/SiC复合材料的ICVI致密化过程. 利用该模型计算出C/SiC复合材料孔
隙率的分布情况以及总体孔隙率在浸渗过程中的演化规律, 对ICVI工艺的优化
具有一定的指导意义.

本文引用格式

魏玺 , 成来飞 , 张立同 , 徐永东 . C/SiC复合材料等温化学气相浸渗过程的数值模拟研究[J]. 无机材料学报, 2006 , 21(5) : 1179 -1184 . DOI: 10.3724/SP.J.1077.2006.01179

Abstract

The multi-scale porosity model
depicting infiltration induced changes of carbon fiber preform and the
mathematical model depicting ICVI process for fabrication of C/SiC composites
were developed. The integrated model was proposed to simulate densification
behavior of C/SiC composites. The correspondences of calculation results and
the experimental data indicate that the model is reasonable and feasible to
characterize ICVI process of C/SiC composites. The calculated results, such
as distribution of local porosity, uniformity of densification and evolution
of global porosity during infiltration process, lay foundation of further
research and optimization of ICVI process for fabrication of C/SiC composites.

参考文献

[1] 张立同, 成来飞, 徐永东. 航空制造工艺, 2003, 1: 24--32.
[2] 李成功, 傅恒志, 于hspace*{.12cm翘, 等. 航空航天材料. 国防工业出版社, 2002. 226--235.
[3] Naslain R. In: R. Warren, editor. Ceramic Matrix Composites. Glasgow: Blackie, 1992. 199--244.
[4] Naslain R. Comp. Sci. & Tech., 2004, 64 (2): 155--170.
[5] Fitzer R, Gadow R. Am. Ceram. Soc. Bull., 1986, 65 (2): 326--335.
[6] Middleman S, Heble B, Cheng H C T. J. Mater. Res., 1990, 5 (7): 1544--1548.
[7] Tai N H, Chou T H. J. Am. Ceram. Soc., 1990, 73 (6): 1489--1498.
[8] Tai N H, Chou T H. J. Am. Ceram. Soc., 1989, 72 (3): 414--420.
[9] 姜开宇, 李贺军, 李克智. 宇航学报, 1999, 20 (4): 104--107.
[10] Currier R P. J. Am. Ceram. Soc., 1990, 73 (8): 2274--2280.
[11] Mcallister P, Wolf E E. Carbon, 1991, 29 (3): 387--396.
[12] Starr T L. J. Mater. Res., 1995, 10 (9): 2360--2366.
[13] Besmann T M, Sheldon B W, Lowden R A, et al. Science, 1991, 253 (6): 1104--1109.
[14] Chung G Y, McCoy B J. J. Am. Ceram. Soc., 1991, 74 (12): 746--751.
[15] Kulik V I, Kulik A V, Ramm M S, et al. J. Cryst. Growth., 2004, 266: 333--339.
[16] Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena. John Wiley & Sons, 1960.
[17] Sheldon B W, Besmann T M. J. Am. Ceram. Soc., 1991, 74 (12): 326--332.
[18] Currier R P, Devlin D J, Morzinski J. J. Adv. Mater., 1996, 27 (4): 13--24.
文章导航

/