研究论文

在Sr 2+ :α-BBO单晶衬底上生长β-BBO薄膜的研究

  • 刘军芳 ,
  • 徐军 ,
  • 姚武
展开
  • 1. 同济大学材料科学与工程学院, 上海 200092; 2. 中科院上海光学精密机械研究所, 上海201800

收稿日期: 2005-11-28

  修回日期: 2006-02-24

  网络出版日期: 2006-11-20

Growth of β-BBO Thin Films on Sr 2+ -doped α-BBO Substrates

  • LIU Jun-Fang ,
  • XU Jun ,
  • YAO Wu
Expand
  • 1. College of Materials Science and Engineering, Tongji University, Shanghai 200092, China; 2. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

Received date: 2005-11-28

  Revised date: 2006-02-24

  Online published: 2006-11-20

摘要

采用液相外延法、脉冲激光沉积法以及气相传输平衡法在Sr 2+ : α-BBO(001) 衬底上生长了质量优异的β-BBO 薄膜, 对薄膜进行了X射线衍射测试以及双晶摇摆曲线分析, 结果表明, 采用Sr 2+ :α-BBO单晶作为衬底制备的β-BBO薄膜具有高的择优取向度和低的半峰宽值. 同目前制备β-BBO薄膜所采用的其他衬底材料相比, Sr 2+ :α-BBO和β-BBO之间具有结构相似、透光范围匹配以及化学稳定性匹配的优点, 表明Sr 2+ :α-BBO单晶将是生长β-BBO薄膜的优异衬底材料.

本文引用格式

刘军芳 , 徐军 , 姚武 . 在Sr 2+ :α-BBO单晶衬底上生长β-BBO薄膜的研究[J]. 无机材料学报, 2006 , 21(6) : 1454 -1460 . DOI: 10.3724/SP.J.1077.2006.01454

Abstract

Crystalline β-BBO thin films were successfully prepared on (001)-oriented Sr 2+ -doped α-BBO substrates by using liquid phase epitaxy, pulsed laser deposition and vapor transport equilibration techniques. The films were characterized by X-ray diffraction and X-ray rocking curve. The present results manifest that the β-BBO thin films grown on Sr 2+ -doped α-BBO substrates have larger degree of orientation f value and smaller X-ray rocking curve FWHM than the ones grown on other reported substrates. Compared with other substrates, α-BBO has the similar structure, the same UV cutoff and the same chemical properties to β-BBO. These results reveal that Sr 2+ -doped α-BBO single crystal may be a promising substrate proper to the growth of β-BBO films.

参考文献

[1]陈创天, 吴柏昌, 江爱栋, 等. 中国科学B, 1984, (7): 598--604.

[2]Eimerl D, Davis L, Velsko S. J. Appl. Phys., 1987, 62(5): 1968--1983.

[3]Kokh A E, Kononova N G, Mokruchnikov P W. J. Crystal Growth, 2000, (216): 359--362.

[4]Roth M, Perlov D. J. Crystal Growth, 1996, (169): 734--740.

[5]Kim H G, Kang J K, Park S J, et al. Optical Materials, 1998, 9(1--4): 356--360.

[6]Yao J Q, Liu H, Ashok P. Acta Optical Sinica, 1995, 15(6): 641--647.

[7]林烽, 林申旺. 光学技术, 1998, (4): 39--40.

[8]Shin-ichi, Toshinobu Y, Ko-ichi K, et al. Journal of Non-Crystalline Solids, 1994, (178): 293--301.

[9]Xiao R F, Ng L C, Yu P, et al. Appl. Phys. Lett., 1995, 67(3): 305--307.

[10]Liao H B, Xiao R F, Yu P, et al. J. Crystal Growth, 1997, (174): 434--439.

[11]Liao H B, Xiao R F, Yu P, et al. J. Vac. SciTechnol. A, 1996, 14(4): 2651--2654.

[12]Studebaker D B, Stauf G T, Baum T H. Appl. Phys. Lett., 1997, 70(5): 565--567.

[13]Maia L J Q, Feitosa C A C, De Vicente F S, et al. J. Vac. SciTechnol. A, 2004, 22(5): 2163--2167.

[14]Shin-ichi, Toshinobu Y, Ko-ichi K, et al. J. Am. Ceram. Soc., 1992, 75(9): 2590--2592.

[15]Maia L J Q, Bernardi M I B, Feitosa C A C, et al. Thin Solid Films, 2004 (457): 246--252.

[16]Takeshi K, Ryo O, Kun$’$ichi M. Materials Letters, 2003, (57): 1056--1061.

[17]Takeshi K, Ryo O, Kun$’$ichi M, et al. J. Mater. Res., 2002, 17(4): 844--851.

[18]Toshinobu Y, Ko-ichi K, Kazuo N. Journal of Sol-Gel and Technology, 1997, (9): 201--209.

[19]Toshinobu Y, Kazuo N, Ko-ichi K, et al. J. Mater. Chem., 1997, 7(6): 929--932.

[20]Liu J F, He X M, Xu J, et al. J. Crystal Growth, 2004 (260): 486.

[21]Lotgering F K. J. Inorg. Nucl. Chem., 1959, (9): 113--118.

[22]Yasunori Furukawa, Kenji Kitamura, Eisuke Suzuki, et al. J. Crystal Growth, 1999, (197): 889--895.
文章导航

/