研究论文

用于非制冷热释电红外探测器的 PZT铁电薄膜研究

  • 王忠华 ,
  • 李振豪 ,
  • 普朝光 ,
  • 杨培志 ,
  • 林猷慎
展开
  • 昆明物理研究所, 昆明 650223

收稿日期: 2005-09-14

  修回日期: 2005-11-15

  网络出版日期: 2006-09-20

PZT Ferroelectric Thin Film for Uncooled Pyroelectric Infrared Detectors

  • WANG Zhong-Hua ,
  • LI Zhen-Hao ,
  • PU Chao-Guang ,
  • YANG Pei-Zhi ,
  • LIN You-Shen
Expand
  • Kunming Institute of Physics, Kunming 650223, China

Received date: 2005-09-14

  Revised date: 2005-11-15

  Online published: 2006-09-20

摘要

采用溶胶-凝胶和射频磁控溅射相结合的方法制备了PZT铁电薄膜. 用溶胶-凝胶法制备一层PZT薄膜作为籽晶层, 在衬底PZT(seed layer)/Pt/Ti/SiO2/Si上用射频磁控溅射过量10%Pb的Pb(ZrxTi1-x)O3(x=0.3)陶瓷靶生长厚500nm的PZT铁电薄膜. 采用在450℃预退火, 575℃后退火的快速分级退火方法对PZT铁电薄膜进行热处理. PZT铁电薄膜获得了较好的热释电性能, 热释电系数、介电常数、介电损耗和探测度优值因子分别为ρ=2.3×10-8C.cm-2·K-1, ε =500, tanδ =0.02, F d=0.94×10-5Pa-0.5.

本文引用格式

王忠华 , 李振豪 , 普朝光 , 杨培志 , 林猷慎 . 用于非制冷热释电红外探测器的 PZT铁电薄膜研究[J]. 无机材料学报, 2006 , 21(5) : 1223 -1229 . DOI: 10.3724/SP.J.1077.2006.01223

Abstract

Lead zirconate titanate(PZT) ferroelectric thin films were prepared by both sol-gel and r.f. magnetron sputtering technologies. In order to decrease the crystallization temperature of thin films and improve the probabilities of nucleus, a PZT seed-layer was prepared by using the sol-gel method. The PZT ferroelectric thin films with about 500nm thickness were sputter-deposited from a Pb(ZrxTi1-x)O3(x=0.3) ceramic target containing 10% excess Pb on PZT(seed layer)/Pt/Ti/SiO2/Si substrates. The stepping-annealing with RTP (rapid theal process) was proposed for theal treatment of the PZT ferroelectric thin films. The PZT ferroelectric thin film showed good dielectric and pyroelectric properties
by pre-annealing at 450℃ for 5min and following post-annealing at 575℃ for 5min. The results of pyroelectric coefficient 2.3×10-8C·cm-2·K-1, relative dielectric constant 500, dielectric loss 0.02, detectivity figure of merit 0.94×10-5Pa-0.5 were obtained.

参考文献

[1] Achard H, Macacute o H, Peccoud L. Microelectronic Engineering, 1995, (29): 19--28.
[2] Boerasua M Pereiraa, Gomesa M J M, et al. Journal of the European Ceramic
Society, 2004, (24): 1633--1636.
[3] Ma J H, Meng X J, Sun J L, et al. Applied Surface Science, 2005, (240): 275--279.
[4] Liu Weiguo, Jongsoo Ko, Zhu Weiguang. Infrared Physics & Technology, 2000, (41): 169--173.
[5] Chen Shi, Liu Meidong, Li churong, etal. Thin solid films, 2000, (375): 288--291.
[6] Mardare C C, Joanni E, Mardare A I, et al. Appiled Surface Science, 2005, (243): 113--124.
[7] Dong Heon Kang, Kim Kyung Woo, Sung Yong Lee, et al. Material Chemistry and Physics, 2005, (90): 411--416.
[8] Jong Soo Ko, Liu Weiguo, Zhu Weiguang, et al. Solid-State Electronnics, 2002, (46): 1155--1161.
[9] Sum l l, Tan O K, Liu Weiguo, et al. Microelectronic Engineering, 2003, (66): 738--744.
[10] Hwang Jae-Seob, Kim Woo Sik, Hyung-Ho Park, et al. Sensors and Actuators A, 2005, (117): 137--142.
[11] Sum Ling Ling, Ooi Kiang Tan, Liu Wei Guo, et al. Infrared Physics &
Technology, 2003, (44): 177--182.
[12] Verardi P, Craciun F, Dinescu M, et al. Material Science and Engineering B, 2005, (118): 39--43.
[13] Sun L L, Liu Weiguo, Tan O K, et al. Material Science and Engineering B, 2003, (99): 173--178.
[14] Park Chul-Ho, Son Young-Gook, Won Mi-Sook. Microchemical Journal, 2005, (80): 201--206.
[15] Jong Soo Ko, Liu Weiguo, Zhu Weiguang. Sensors and Actuators A, 2001, (93): 117--122.
[16] Pael A, Obhi J S. GEC J. of Research, 1995, (12): 141--145.
[17] Liu Weiguo , Ban Jiang, Jong Soo Ko, et al. Integrated ferroelectrics, 2001, (35): 47--54.
[18] Liu Weiguo, Jong Soo Ko, Zhu Weiguang. Integrated ferroelectrics, 2001, (35): 127--135.
文章导航

/