研究论文

钛合金微弧氧化膜微晶生长特性的研究

  • 汪剑波 ,
  • 吴汉华 ,
  • 金曾孙 ,
  • 唐元广 ,
  • 常鸿
展开
  • 1. 吉林大学超硬材料国家重点实验室, 长春 130012;
    2.吉林大学物理学院, 长春 130021

收稿日期: 1900-01-01

  修回日期: 2005-08-29

  网络出版日期: 2006-05-20

Microcrystal Growing Characters of Titania Film by MAO

  • WANG Jian-Bo ,
  • WU Han-Hua ,
  • JIN Zeng-Sun ,
  • TANG Yuan-Guang ,
  • CHANG Hong
Expand
  • 1. National Key Lab of Superhard Materials, Jilin University, Changchun 130012, China;
    2. College of Physics, Jilin University, Changchun 130021, China

Received date: 1900-01-01

  Revised date: 2005-08-29

  Online published: 2006-05-20

摘要

在Na2CO3-NaOH溶液中, 采用自制多功能单极性脉冲微弧氧化电源在TC4钛合金上制备了TiO2薄膜. 利用XRD和SEM分别对氧化膜的相组成和表面形貌进行了分析. 结果表明, 在脉冲率和电流密度分别固定为5000Hz和20A/dm2时, 氧化膜主要含锐钛矿和金红石相TiO2,随着处理时间的延长, 金红石TiO2的相对含量逐渐增加; 氧化膜呈多孔结构, 表面布满了尺寸在300nm~1μm之间的TiO2颗粒, 随着处理时间的延长, 这些颗粒微孔的尺寸明显变大, 其密度逐渐减小.

本文引用格式

汪剑波 , 吴汉华 , 金曾孙 , 唐元广 , 常鸿 . 钛合金微弧氧化膜微晶生长特性的研究[J]. 无机材料学报, 2006 , 21(3) : 731 -735 . DOI: 10.3724/SP.J.1077.2006.00731

Abstract

By using a unipolar multifunction pulse power supply, titania films with micropores and micrograins were prepared by microarc oxidation of titanium alloy in a Na2CO3 and NaOH electrolytic solution under the condition of the constant pulse current density and frequency of 20A/dm2 and 5000Hz. XRD and SEM were employed to characterize the phase component and surface morphology of the films. The experimental results show that (1) the film consists of rutile and anatase phases, and the content of rutile increases with the increasing treatment time; (2) the coating surface is porous and has a large number of micrograins sized from 300nm to 1μm, and the sizes of the micrograins and micropores increase gradually, with the increasing time, while their densities decrease by degrees.

参考文献

1 Yerokhin A L, Nie X, Leyland A, et al. Surf. Coat. Technol., 1999, 122: 73-93.
2 Wu H H, Lü X Y, Long B H, et al. Mater. Lett., 2005, 59: 370-375.
3 Xue W B, Deng Z W, Lai Y C. Heat Treatment of Metal, 2000, 1: 1-3.
4 Wu H H, Jin Z S, Long B Y, et al. Chin. Phys. Lett., 2003, 20 (10): 1815-1818.
5 Yerokhin A L, Nie X, Leyland A. Surf. Coat. Technol., 2000, 130: 195-206.
6 Liu Z W, Jun K W, Roh H S. J. Molecular Catalysis, 2002, 189: 283-293.
7 Wu hanhua, et al. Journal of Inorganic Materials, 2004, 19 (3): 617-622.
8 Wu H H, Long B H, Lü X Y, et al. Acta. Phys. Sin., 2005, 54 (04): 1697-1701.
9 Gnedenkov S V, Khrisanfova O A, Zavidnaya A G. Surf. Coat. Technol., 2001, 145: 146-151.
10 Sundararajan G, Rama Krishna L. Surf. Coat. Technol., 2003, 167: 269-275.
11 Wang Y M, Jiang B L, Lei T Q, et al. Mater. Lett., 2004, 58: 1907-1911.
文章导航

/