研究论文

Zn0.9Mg0.1O:Ga宽带隙导电膜的 PLD制备及性能研究

  • 陈志强 ,
  • 方国家 ,
  • 李春 ,
  • 盛苏 ,
  • 赵兴中
展开
  • 武汉大学物理科学与技术学院、纳米科技中心, 武汉 430072

收稿日期: 2005-06-30

  修回日期: 2005-09-12

  网络出版日期: 2006-05-20

Fabrication and Properties of Pulsed Laser Deposited Wide Band-gap Zn0.9Mg0.1O:Ga Conducting Films

  • CHEN Zhi-Qiang ,
  • FANG Guo-Jia ,
  • LI Chun ,
  • SHENG Su ,
  • ZHAO Xing-Zhong
Expand
  • Department of Physics and Center of Nanoscience & Nanotechnology Research, Wuhan University, Wuhan 430072, China

Received date: 2005-06-30

  Revised date: 2005-09-12

  Online published: 2006-05-20

摘要

利用脉冲激光沉积法(PLD)制备了Ga掺杂的Zn0.9Mg0.1O(ZMO:Ga)宽带隙透明导电薄膜. 采用各种分析手段研究了沉积温度和真空退火处理对薄膜结构、表面形貌及光电性能的影响. 结果表明, 制备的薄膜具有ZnO(002)择优取向; 200℃下沉积的薄膜通过3×10-3Pa的真空400℃退火2h后, 其电阻率由8.12×10-4Ω·cm减小到4.74×10-4Ω·cm, 禁带宽度则由原来的3.83eV增加到3.90eV. 退火处理增强了薄膜的择优取向和结晶度、增加了禁带宽度、提高了载流子浓度并使其透射谱线的光学吸收边发生蓝移现象.

本文引用格式

陈志强 , 方国家 , 李春 , 盛苏 , 赵兴中 . Zn0.9Mg0.1O:Ga宽带隙导电膜的 PLD制备及性能研究[J]. 无机材料学报, 2006 , 21(3) : 707 -712 . DOI: 10.3724/SP.J.1077.2006.00707

Abstract

Wide band gap and highly transparent conductive Ga-doped Zn0.9Mg0.1O (ZMO:Ga) thin films were deposited on glass substrates by pulsed laser deposition (PLD) technique. The properties of the films were characterized through hall effect, double beam spectrophotometer, atomic force microscope (AFM) and X-ray diffraction (XRD). The effects of substrate temperature and post
deposition vacuum annealing on structural, electrical and optical properties of ZMO:Ga thin films were investigated. The experimental results show that the electrical resistivity of the film deposited at 200℃ is 8.12×10-4Ω·cm, and can be further decreased to 4.74×10-4Ω·cm with post annealing at 400℃ for 2h under 3×10-3Pa. In the meantime, its band gap energy can be increased to 3.90eV from 3.83eV. The annealing process leads to the improvement of (002) orientation, wider band gap, increased carrier concentration and blue shift of absorption edge in the transmission spectra of ZMO:Ga thin films.

参考文献

1 Ohtomo A, Kawasaki M, Koida T, et al. Applied Physics Letters, 1998, 72 (19): 2466-2468.
2 Yang W, Hullavarad S S, Nagaraj B, et al. Applied Physics Letters, 2003, 82 (20): 3424-3426.
3 Vashaei Z, Harada C, Setiawan A, et al. Current Applied Physics, 2004, 4 (6): 618-620.
4 邹璐, 汪雷, 黄靖云, 等. 物理学报, 2003, 52 (4): 935-938.
5 Minemoto T, Negami T, Nishiwaki S, et al. Thin Solid Films, 2000, 372 (2): 173-176.
6 Fang Guo-jia, Li De-jie, Yao Bao-Lun. Journal of Crystal Growth, 2003, 247 (3-4): 393-400.
7 Qiu D J, Wu H Z, et al. Chinese Physics Letters, 2003, 20 (6): 582-584.
8 Ogata K, Koike K, Tanite T, et al. Journal of Crystal Growth, 2003, 251 (1-4): 623-627.
9 Muthukumar S, Zhong J, Chen Y, et al. Applied Physics Letters, 2003, 82 (5): 742-744.
10 Zhao D X, Liu Y C, et al. Journal of Applied Physics, 2001, 90 (11): 5561-5563.
11 Yang W, Vispute R D, Choopun S, et al. Applied Physics Letters, 2001, 78 (18): 2787-2789.
12 Ko H J, Chen Y F, Hong S K, et al. Applied Physics Letters, 2000, 77 (23): 3761-3763.
13 Yu Xuhu, Ma Jin, Ji Feng, et al. Applied Surface Science, 2005, 239 (2): 222-226.
14 Ren Chungyuan, Chiou Shanhaw, Hsue Chenshiung. Physica B, 2004, 349 (1-4): 136-142.
15 Kim H, Gilmore C M, Pique A, et al. Journal of Applied Physics, 1999, 86 (11): 6451-6461.
16 Han M Y, Jou J H. Thin Solid Films, 1995, 260 (1): 58-64.
17 黄佳木, 董建华, 张新元. 电子元件与材料, 2002, 21 (11): 7--13.
18 Lee G H, Yamamoto Y, Kourogi M, et al. Thin Solid Films, 2001, 386 (1): 117-120.
19 袁国栋, 叶志镇, 曾昱嘉, 等. 半导体学报, 2004, 25 (6): 668--673.
20 Yu Xuhu, Ma Jin, Ji Feng, et al. Journal of Crystal Growth, 2005, 274 (3-4): 474-479.
21 Fang Guo-jia, Li De-jie, Yao Bao-lun. Phys. Stat. Sol. (a), 2002, 193 (1): 139-152.
文章导航

/