研究论文

采用超细粉体和放电等离子烧结技术制备透明β-磷酸三钙生物陶瓷的研究

  • 林开利 ,
  • 秦超 ,
  • 倪似愚 ,
  • 陈立东 ,
  • 卢建熙 ,
  • 常江
展开
  • 中国科学院上海硅酸盐研究所, 上海 200050

收稿日期: 2005-06-22

  修回日期: 2005-09-22

  网络出版日期: 2006-05-20

Fabrication of Transparent β-Ca3(PO4)2 Bioceramics by Spark Plasma Sintering Technique using Ultrafine Powders

  • LIN Kai-Li ,
  • QIN Chao ,
  • NI Si-Yu ,
  • CHEN Li-Dong ,
  • LU Jian-Xi ,
  • CHANG Jiang
Expand
  • Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2005-06-22

  Revised date: 2005-09-22

  Online published: 2006-05-20

摘要

应用化学沉淀法制备了粒径约100nm的β-磷酸三钙(β-TCP)超细粉体, 并采用放电等离子烧结技术烧结β-TCP, 在875℃的烧结温度、150℃/min的升温速率和40MPa的烧结压力下, 保温2min, 制备得到透明的β-TCP生物陶瓷. XRD、FESEM、密度和透光性能分析结果表明, 制备得到的β-TCP生物陶瓷纯度高、结构致密、晶粒平均尺寸约250nm、具有良好的透光性能. 细胞相容性研究的结果表明, 透明β-TCP生物陶瓷对骨髓间质干细胞的增殖作用明显高于常规的通用聚乙烯培养板.

本文引用格式

林开利 , 秦超 , 倪似愚 , 陈立东 , 卢建熙 , 常江 . 采用超细粉体和放电等离子烧结技术制备透明β-磷酸三钙生物陶瓷的研究[J]. 无机材料学报, 2006 , 21(3) : 645 -650 . DOI: 10.3724/SP.J.1077.2006.00645

Abstract

Ultrafine powders of β-tricalcium (β-Ca3(PO4)2, β-TCP) powders (about 100nm in average size) were obtained by the precipitation method. Transparent β-TCP bioceramics were fabricated by using these ultrafine powders and spark plasma sintering technique at 875℃ for 2min under 40MPa and at the heating rate of 150℃/min. No phases other than β-TCP were detected in the sintered samples. The relative density of the prepared β-TCP was over 99.7%. The results of the FESEM show that the transparent bodies have an average grain size of 250nm and seem to be pore-free. The MTT method shows that the proliferation of bone mesenchymal stem cells on transparent β-TCP bioceramics is much better than that on the polystyrene cell culture cluster.

参考文献

1 Hench L L. J. Am. Ceram. Soc., 1991, 74: 1487-1510.
2 Hench L L. J. Am. Ceram. Soc., 1998, 81: 1705-1728.
3 Ioku K, Kawagoe D, Toya H, et al. Trans. Mater. Res. Soc. Jpn., 2002, 27: 447-449.
4 Kotibuki N, Ioku K, Kawagoe D, et al. Biomaterials, 2005, 26: 779-785.
5 Li J, Hermansson L. Interceram., 1990, 39: 13-15.
6 Fang Y, Agrawal D K, Roy D N, et al. Mater. Let., 1995, 23: 147-151.
7 Uematsu K, Takagi M, Honda T, et al. J. Am. Ceram. Soc., 1989, 72: 1476-1478.
8 周艳平, 王岱峰, 奚益明, 等(ZHOU Yan-Ping, et al). 无机材料学报(Journal of Inorganic Materials), 1999, 14 (4): 674-678.
9 Ito H, Yamada H, Yoshida M, et al. J. Appl. Phys. Jpn., 1988, 27: 1371-1373.
10 刘军芳, 傅正义, 王皓(LIU Jun-Fang, et al). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2003, 31: 320-323.
11 Ringe J, Kaps C, Schmitt B, et al. Cell Tissue Res., 2002, 307: 321-327.
12 Mosmann T. J. Immunological Methods, 1983, 65: 55-63.
13 Wang S W, Chen L D, Hirai T. J. Mater. Res., 2000, 15: 982-987.
14 Gao L, Hong J S, Miyamotho, et al. J. Eure. Ceram. Soc., 2000, 20: 2149-2152.
15 Gu Y W, Loh N H, Khor K A, et al. Biomaterials, 2002, 23: 37-43.
16 Gao L, Wang H Z, Hong J S, et al. NanoStructured Materials, 1999, 11: 43-45.
17 Shen Z J, Adolfsson E, Nygren M, et al. Adv. Mater., 2001, 13: 214-216.
18 Lee Y I, Lee J H, Hong S H, et al. Mater. Res. Bull., 2003, 38: 925-930.
19 Greskovich C, Woods K N. Am. Ceram. Soc. Bull., 1973, 52: 473-478.
文章导航

/