采用聚碳硅烷前驱体转化法制备了SiC/CNTs纳米复合材料, 采用扫描电子显微镜、透射电子显微镜、高分辨电子显微镜对样品进行了微观结构分析, 并测试了材料在2~18GHz频率范围内的电磁参数. 结果表明, 当初始聚碳硅烷/二甲苯溶液浓度为10%~15%时, 聚碳硅烷前驱体转化法在CNTs表面可以制备SiC包覆层均匀致密的复合一维纳米材料. SiC包覆CNTs一维纳米材料的电磁参数测试表明, 其损耗机制以介电损耗为主, 当聚碳硅烷含量为15%时, SiC/CNTs纳米复合材料具有最高的介电常数和损耗角, 较好的电磁波吸收特性, 并表现出复合效应.
SiC coated CNTs nano-composites were prepared by the conversion of the precursor polycarbosilane (PCS) and their microstructures were observed and analyzed by SEM, TEM and HRTEM. The electromagnetic parameters of the nano-composites were measured under the frequency from 2 to 18GHZ. Results
showed that uniform and compact SiC coatings on the surfaces of CNTs could be synthesized in the initial PCS/xylene concentration section of 10%~15%. The measurement of the electromagnetic parameters of SiC coated CNTs one-dimensional nano-composites indicated that the main electromagnetic loss mechanism was dielectric loss. When the initial PCS concentration was 15%, the SiC coated CNTs nano-composites had the highest dielectric coefficient and loss angle and the best electromagnetic wave absorption properties as well as the composite effects.
1 刘亚宁. 电磁生物效应. 北京 北京邮电大学出版社, 2002. 35-38.
2 Che Renchao, Li Yongqing. Journal of Materials Science, 1999, 18: 1963-1964.
3 Casady J B, Johnson R W, et al. Solid State Electronics, 1996, 39: 1409-1414.
4 葛凯勇, 王群, 张晓宁, 等. 功能材料与器件学报, 2002, 8: 263-266.
5 孙晶晶, 李建保, 张波, 等. 材料工程, 2003, 3: 43-47.
6 李黎明, 徐政. 江苏陶瓷, 2004, 37: 6-10.
7 高文, 冯志海, 黎义. 宇航材料工艺, 2000, 5: 1-5.
8 焦桓, 罗发, 周万城. 西北工业大学学报, 2002, 20: 172-175.