研究论文

铁掺杂0.2PZN-0.8PZT铁电陶瓷Raman散射研究

  • 路朋献 ,
  • 朱满康 ,
  • 侯育冬 ,
  • 宋雪梅 ,
  • 汪浩 ,
  • 严辉
展开
  • 1. 北京工业大学材料学院, 北京 100022;
    2. 河南工业大学材料学院, 郑州 450052

收稿日期: 2005-05-13

  修回日期: 2005-06-30

  网络出版日期: 2006-05-20

Raman Scattering Studies on Fe2O3-modified 0.2PZN-0.8PZT Piezoceramics

  • LU Peng-Xian ,
  • ZHU Man-Kang ,
  • HOU Yu-Dong ,
  • SONG Xue-Mei ,
  • WANG Hao ,
  • YAN Hui
Expand
  • 1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, China;
    2. School of Materials, Henan University of Technology, Zhengzhou 450052, China

Received date: 2005-05-13

  Revised date: 2005-06-30

  Online published: 2006-05-20

摘要

采用Raman散射方法研究了铁掺杂Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3(0.2PZN-0.8PZT)铁电陶瓷中三方-四方共存现象. 通过分析四方相E(3TO)和A1(3TO)模式与三方相R l模式之间的相对强度, 以及四方相E(3LO)和A1(3LO)模式与三方相R h模式之间的相对强度, 确定了铁掺杂对0.2PZN-0.8PZT陶瓷中三方-四方共存结构的影响, 并得到了XRD相分析的验证. 因此, 通过分解Raman散射中三方-四方振动模式, 可以表征掺杂对PZT基陶瓷中三方-四方共存现象的变化趋势.

本文引用格式

路朋献 , 朱满康 , 侯育冬 , 宋雪梅 , 汪浩 , 严辉 . 铁掺杂0.2PZN-0.8PZT铁电陶瓷Raman散射研究[J]. 无机材料学报, 2006 , 21(3) : 633 -639 . DOI: 10.3724/SP.J.1077.2006.00633

Abstract

Raman scattering spectroscopy is widely used to investigate the phase transition of ferroelectrics, including the ferroelectric-paraelectric transition. In the present paper, the phase coexistence of rhombohedral and tetragonal phases caused by Fe2O3 doping in Pb(Zn1/3Nb2/3)0.2(Zr0.5Ti0.5)0.8O3(0.2PZN-0.8PZT) ceramics was investigated by Raman scattering spectroscopy in detail. On the basis of the Raman scattering analysis on the tetragonal E(3TO) and A1(3TO) modes and the rhombohedral R l mode, or on the tetragonal E(3LO) and A1(3LO) modes and the rhombohedral R h mode, the tendency of phase transition induced by Fe2O3 doping was evaluated, which has been affirmed by XRD results. This indicates
that Raman scattering analysis is an effective way to investigate the doping effect on the phase coexistence in PZT based ceramics.

参考文献

1 Iwata M, Tomisato N, Orihara H, et al. Jpn. J. Appl. Phys., 2001, 40(9): 5819-5822.
2 Lee S H, Jang H M, Sung H H, et al. Appl. Phys. Lett., 2002, 81(13): 2439-2441.
3 Yimnirun R, Ananta S, Laoratanakul P. Mater. Sci. Eng. B., 2004, 112: 79-86.
4 Loudon R. Advances in Physics, 2001, 50(7): 813-864.
5 Zhang H-X, Usimgki A, Leppzvuori S, et al. J. Appl. Phys., 1994, 76(7): 4294-4230.
6 Hidehiro O, Makoto I, Naohiko Y, et al. Jpn. J. Appl. Phys., 1998, 37(9B, Part1): 5410-5412.
7 Souza Filho A G, Lima K C V, Ayala A P, et al. Phys. Revi. B., 2002, 66: 132107.
8 Souza Filho A G, Freire P T C, Sasaki J M, et al. Solid State Comm., 1999, 112(7): 383-386.
9 El-Harrad I, Becker P, Carabatos-Nèdelec C, et al. J. Appl. Phys., 1995, 78(9): 5581-5591.
10 Dai S B, Juang Y D, Hwang J S, et al. J. Cryst. Growth, 2003, 257(3-4): 316-320.
11 Rouquette J, Haines J, Bornand V, et al. Solid State Sci., 2003, 5(3): 451-457.
12 Frantti J, Lantto V, Lappalainen J. J. Appl. Phys., 1996, 79(2): 1065-1072.
文章导航

/