研究论文

改进的柠檬酸法制备 LSGM和 LSGMC8.5及其性能比较

  • 徐国跃 ,
  • 曹敏 ,
  • 刘波 ,
  • 承新 ,
  • 周健
展开
  • 南京航空航天大学材料科学与技术学院, 南京 210016

收稿日期: 2005-06-24

  修回日期: 2005-09-05

  网络出版日期: 2006-05-20

Comparison of LSGM and LSGMC8.5 Synthesized by Advanced Pechini Method

  • XU Guo-Yue ,
  • CAO Min ,
  • LIU Bo ,
  • CHENG Xin ,
  • ZHOU Jian
Expand
  • College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2005-06-24

  Revised date: 2005-09-05

  Online published: 2006-05-20

摘要

用改进的柠檬酸法合成了具有钙钛矿结构的LSGM(La0.9Sr0.1Ga0.85Mg0.15O3-δ)和Co掺杂的LSGMC8.5(La0.9Sr0.1(Ga0.9Co0.1)0.85Mg0.15O3-δ). 从XRD、DTA-TG曲线、交流阻抗谱、电导率、密度和化学稳定性等方面比较了LSGM 和LSGMC8.5的性能. 从而探讨了Co掺杂对于LSGM性能的影响. 结果表明相对于LSGM, Co的掺杂使立方钙钛矿结构的形成温度由1400℃降低到1300℃左右, 离子电导率由3.85×10-2上升到5.38×10-2S/cm, 密度由理论密度的95%上升到99%. 因此Co的掺杂使LSGM的各方面性能都有了一定的提高, LSGMC8.5比LSGM更适合做中温SOFC的电解质材料.

本文引用格式

徐国跃 , 曹敏 , 刘波 , 承新 , 周健 . 改进的柠檬酸法制备 LSGM和 LSGMC8.5及其性能比较[J]. 无机材料学报, 2006 , 21(3) : 612 -618 . DOI: 10.3724/SP.J.1077.2006.00612

Abstract

The perovskite-type LSGM(La0.9Sr0.1Ga0.85Mg0.15O2.875) and Co-doped
LSGMC8.5 (La0.9Sr0.1(Ga0.9Co0.1)Mg0.15O3-δ) were synthesized by the advanced Pechini method. Their properties were compared by the analysis of XRD, DTA-TG, impedance spectra, conductivity and density. It showed that Co doping decreased the forming temperature of cubic perovskite structure from 1400℃ to 1300℃, and increased the fractional density from 95% to 99%. The conductivity of the LSGMC8.5 sintered at 1400℃ for 6h is 5.38×10-2S/cm. So the Co-doped LSGMC8.5 is more suitable for IT-SOFC.

参考文献

1 Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801-3803.
2 Huang P, Petric A. J. Electrochem. Soc., 1996, 143: 1644--1648.
3 Huang K, Feng M, Goodenough J B. J. Am. Ceram. Soc., 1996, 79: 1100-1104.
4 Maric R, Ohara S, Fukui T, et al. J. Electrochem. Soc., 1999, 146: 2006-2010.
5 Ishihara T, Furutani H, Honda, et al. J. Chem. Mater., 1999, 11: 2081-2088.
6 Yamada T, Chitose N, Akikusa J, et al. Development of intermediate-temperature SOFC module using doped lanthanum gallate. In Proceedings of the EighthInternational Symposium on Solid Oxide Fuel Cells (SOFC-VIII), ed. C. Singhal and M. Dokiya. The Electrochemical Society Inc., Pennington, NJ, USA, 2003. 113-118.
7 Huang K, Goodenough J B. J. Sol. State Chem., 1998, 136: 274-283.
8 Tas A C, Majewski P, Aldinger F. J. Am. Ceram. Soc., 2000, 83: 2954-2960.
9 Majewski P, Rozumek M, Tas C A, et al. J. Electroceram., 2002, 8: 65-73.
10 Stevenson J W, Armstrong T R, McCready D E, et al. J. Electrochem Soc., 1997, 144 (10): 3613-3620.
11 Bauerle J E. J. Phys Chem Solids., 1969, 30: 265-267.
12 郑文君, 武丽艳, 彭定坤, 等(ZHAENG Wen-Jun, et al). 无机材料学报(Journal of Inorganic Materials), 2001, 16 (2): 358-362.
13 Zha S, Xia C, Fang X, et al. Ceram. Int., 2001, 27: 649--654.
14 Saiful Islam M, Andrew Davies R. J. Mater. Chem., 2004, 14: 86-93.
15 Trofimenko N, Ullmann H. J. Solid State Ionics, 1999, 118: 215-227.
16 Kim J H, Yoo H I. J. Solid State Ionics, 2001, 140: 105--113.
17 Ishihara T, Shibayama T, Ishikawa S, et al. J. Journal of the European Ceramic Society, 2004, 24: 1329-1335.
18 Watanabe M, Uchida H, Yoshida M. J. Electrochem. Soc., 1997, 144: 1739-1743.
19 Yamaji K, Horita T, Ishikawa M, et al. J Electrochemical Soc., 1997, 40: 1041-1050.
文章导航

/