研究论文

Sr、Mg掺杂LaGaO3固体电解质材料的离子导电性研究

  • 石敏 ,
  • 许育东 ,
  • 刘宁 ,
  • 汪灿 ,
  • Majewski P
展开
  • 1. 合肥工业大学 材料科学与工程学院, 合肥 230009;
    2. 马普金属所, 德国斯图加特 70569

收稿日期: 2004-12-22

  修回日期: 2005-10-31

  网络出版日期: 2006-05-20

Ionic Conductivity and Microstructure of Sr- and Mg-doped LaGaO3

  • SHI Min ,
  • XU Yu-Dong ,
  • LIU Ning ,
  • WANG Can ,
  • MAJEWSKI P
Expand
  • 1. School of Materials Science & Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Max-Planck-Institute for Metals Research, Stuttgart 70569, Germany

Received date: 2004-12-22

  Revised date: 2005-10-31

  Online published: 2006-05-20

摘要

采用固态反应法制备了Sr、Mg掺杂的LaGaO3固体电解质材料, 研究了不同Sr、Mg掺杂量对LSGM材料的导电性的影响. 结果表明, 随Sr、Mg掺杂量的增加, LSGM材料的电导率开始增加, 达到最大值后,逐步降低, LSGM1520和LSGM2015具有最高电导率, 此时材料由单一的立方相组成; LSGM材料的离子电导率随测试温度的升高而增加, ln(σ T)与1/T关系曲线呈现两段不同斜率的直线, 交点温度为T*, 当测试温度低于T*时, 氧离子迁移激活能大于温度高于T*的激活能.

本文引用格式

石敏 , 许育东 , 刘宁 , 汪灿 , Majewski P . Sr、Mg掺杂LaGaO3固体电解质材料的离子导电性研究[J]. 无机材料学报, 2006 , 21(3) : 605 -611 . DOI: 10.3724/SP.J.1077.2006.00605

Abstract

Samples of Sr- and Mg-doped LaGaO3 (LSGM) were prepared by using a solid state reaction method. The conductivities of LSGM with various additions of Sr and Mg were dealt with. The results show that the ionic conductivities of LSGM increase with the increase of x or y at first, and after reaching a maximum, the
ionic conductivities of LSGM decrease with the further increase of x or y. It can be seen that Sr- and Mg-doped LaGaO3 materials with the highest conductivity, σ=0.148S/cm at 800℃, are LSGM1520 and LSGM2015. For the two compositions, LSGM materials are composed of single phase-LaGaO3 without secondary phases. It can also be seen that ionic conductivities of LSGM increase with the increase of testing temperature and the curves of ln(σ T) with 1/T reveal two straight lines intersecting at T*(T* is about 670℃) and activation energy of oxygen-vacancy motion at lower temperatures (TT*).

参考文献

1 Sammers N M, Tompsett G A, Phillips R J, et al. Solid State Ionics, 1998, 111 (1-2): 1-7.
2 Dotelli G, Sora I N, Schmid C, et al. Solid State Ionics, 2002, 152-153: 509-515.
3 Chen X J, Khor K A, Chan S H, et al. Materials Science and Engineering A, 2002, 335 (1-2): 246-252.
4 Horita T, Yamaji K, Sakai N, et al. Electrochim. Acta, 2001, 46 (12): 1837-1845.
5 Ishihara T, Shibayama T, Nishiguchi H, et al. J. Mater. Sci., 2001, 36 (5): 1125-1131.
6 汪灿, 刘宁, 石
敏, 等. 合肥工业大学学报, 2004, 19 (6): 1176-1180.
7 Stambouli A B, Traversa E. Renewable and Sustainable Energy Review, 2002, 6 (5): 433-455.
8 Huang K, Wan J, Goodenough J B. J. Mater. Sci., 2001, 36 (5): 1093-1098.
9 Choy K, Bai W, Charojrochkul S, et al. Journal of Power Sources, 1998, 71 (1-2): 361-369.
10 Djurado E, Labeau M. J. Eur. Ceram. Soc., 1998, 18 (10): 1397-1404.
11 Ishihara T, Matsuda H, Takita Y. Solid State Ionics, 1996, 86-88 (1): 197-201.
12 Mathews T, Sellar J R, Muddle B C, et al. Chem. Mater., 2000, 12 (4): 917-922.
13 Mathews T, Sellar J R. Solid State Ionics, 2000, 135 (1-4): 411-417.
14 Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116 (9): 3801-3803.
15 Choi S M, Lee K T, Kim S, et al. Solid State Ionics, 2000, 131 (3-4): 221-228.
16 刘世友, 李京萍. 新能源, 1999, 21 (2): 39-41.
17 Yamaji K, Negishi H, Horita T, et al. Solid State Ionics, 2000, 135 (1-4): 389-396.
18 Karim D P, Aldred A T. Phys. Rev., B, 1979, 20 (6): 2255-2263.
19 Huang K, Robin S, John B, et al. J. Am. Ceram. Soc., 1998, 81 (10): 2565-2575.
20 Huang K, Feng M, Goodenough J B. J. Am. Ceram. Soc., 1996, 79 (4): 1100-1104.
文章导航

/