研究论文

混合表面活性剂法制备介孔SiO2微球及其Semi-batch法生长

  • 邱健全 ,
  • 赵翔 ,
  • 金敏超 ,
  • 蔡强 ,
  • 李恒德
展开
  • 清华大学材料科学与工程系先进材料教育部重点实验室, 北京 100084

收稿日期: 2005-07-04

  修回日期: 2005-08-29

  网络出版日期: 2006-05-20

Synthesis of Mesoporous Silica Spheres by Using Neutral-cationic Surfactant and Semi-batch Growth

  • QIU Jian-Quan ,
  • ZHAO Xiang ,
  • JIN Min-Chao ,
  • CAI Qiang ,
  • LI Heng-De
Expand
  • Department of Material Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials of Ministry of Education, Beijing 100084, China

Received date: 2005-07-04

  Revised date: 2005-08-29

  Online published: 2006-05-20

摘要

以TEOS为原料, 以表面活性剂CTAB与十二胺的混合物为模板剂, 以C2H5OH、C3H7OH和H2O为共溶剂, 在弱碱性条件下制备出单分散SiO2介孔微球. 通过调变模板剂用量以及共溶剂的比例, 所得微球粒径在0.2~1.5μm范围内可调节. 并采用semi-batch(半间歇加料)方法进一步生长微球, 使其粒径增大到3μm. 此类微球具有3nm的平均孔径和较高的比表面积, 有望作为高效液相色谱(HPLC)的固定相而得到广泛应用. 在以上实验的基础上, 本文进一步讨论了SiO2 微球生长过程中的若干理论问题.

本文引用格式

邱健全 , 赵翔 , 金敏超 , 蔡强 , 李恒德 . 混合表面活性剂法制备介孔SiO2微球及其Semi-batch法生长[J]. 无机材料学报, 2006 , 21(3) : 558 -564 . DOI: 10.3724/SP.J.1077.2006.00558

Abstract

A one-step synthesis of mono-dispersed mesoporous silica spheres by using the mixed surfactants CTAB and dodecylamine proceeded with the hydrolysis and condensation of tetraethylorthosilicate (TEOS) in a mixture of alcohol, isopropyl alcohol, water, and ammonia as a catalyst. The silica spheres have high specific
surface area and can be used as a good substrate in high performance liquid
chromatography (HPLC). The size of 0.2~1.5μm and morphology of the silica spheres can be controlled by varying the proportion of surfactant and co-solvent. The prepared silica spheres can be enlarged to the maximum diameter 3μm with a seeded growth method in a semi-batch reacting system. Based on the experiments above, several mechanisms were discussed on the growth
process of mesoporous silica spheres in the synthesis.

参考文献

1 Boissière ere C, Prouzet E. Adv. Funct. Mater., 2001, 11 (2): 129-135.
2 Gallis K, Araujo J, Landry C. Adv. Mater., 1999, 11 (17): 1452-1455.
3 Ma Y, Qi L, Ma J. Colloid. Surface A., 2003, 229 (1-3): 1-8.
4 Xia Y, Gates B, Yin Y, et al. Adv. Mater., 2000, 12 (10): 693-713.
5 Yano K, Fukushima Y. J. Mater. Chem., 2003, 13 (10): 2577-2581.
6 Stöber W, Fink A, Bohn E. J. Coll. Interf. Sci., 1968, 26: 62-69.
7 Nooney R, Thirunavukkarasu D, Ostafin A, et al. Chem. Mater., 2002, 14 (11): 4721-4728.
8 Huo Q, Feng J, Stucky G, et al. Chem. Mater., 1997, 9 (1): 14-17.
9 Giesche H. Eur. Ceram. Soc., 1994, 14 (3): 205-214.
10 Kim K, Kim H. J. Am. Ceram. Soc., 2002, 85 (5): 1107.
11 Nozawa K, Raison L, Ushiki H, et al. Langmuir., 2005, 21 (4): 1516-1523.
12 Kimata M, Koizumi M, Hasegawa M. KAGAKU KOGAKU RONBUNSHU, 1996, 22 (6): 1366-1372.
13 Kresge C, Leonowicz M, Vartulli J, et al. Nature, 1992, 359: 710-712.
14 Yano K, Fukushima Y. J. Mater. Chem., 2004, 14 (10): 1579-1584.
15 Nishimori H, Tatsumisago M, Minami T. J. Sol-Gel Sci. Tech., 1997, 9 (1): 25-31.
16 Büchel G, Unger K, Tsutsumi K, et al. Adv. Mater., 1998, 10 (13): 1036-1038.
17 Gregg S, Sing K. “Adsorption, Surface Area and Porosity”, 2nd. London, New York: Academic Press, 1982. 116-117.
18 Chang S, Lee M, Kim W. J. Colloid. Interface. Sci, 2005, 286 (2): 536-542.
文章导航

/