研究论文

薄膜厚度对透明 PLT厚膜的介电及光学性质的影响

  • 郑分刚 ,
  • 陈建平 ,
  • 李新碗
展开
  • 1. 上海交通大学“区域光纤通信网与新型光通信系统”国家重点实验室, 上海200030;
    2. 苏州大学物理科学与技术学院, 苏州 215006

收稿日期: 2005-03-22

  修回日期: 2005-06-14

  网络出版日期: 2006-03-20

Preparation of Transparent Ferroelectric Pb0.92La0.08TiO3 Thick Films

  • ZHENG Fen-Gang ,
  • CHEN Jian-Ping ,
  • LI Xin-Wan
Expand
  • 1. The State Key Laboratory on Fiber-Optic Local Area Network and Advanced
    Optical Communication Systems, Shanghai Jiaotong University, Shanghai 200030, China;
    2.Department of Physics, Suzhou University, Suzhou 215006, China

Received date: 2005-03-22

  Revised date: 2005-06-14

  Online published: 2006-03-20

摘要

用溶胶-凝胶法在镀有氧化铟锡透明导电电极的玻璃基片上沉积钛酸镧铅薄膜, 在相对较低温度580℃退火, 得到了纯钙钛矿结构的透明PLT薄膜, 薄膜厚度从580~1830nm. 随着薄膜厚度的增加, PLT薄膜的晶粒变大、介电常数增大, 而矫顽场减小. 所有样品的透射率都在70%以上, 最大达到90%左右. 当薄膜厚度增加后, 透射率降低, 并且截止波长向长波方向移动. 在633nm处, 1830nm厚的PLT(掺镧8%)薄膜的折射率n和消光系数分别为2.390.009.

本文引用格式

郑分刚 , 陈建平 , 李新碗 . 薄膜厚度对透明 PLT厚膜的介电及光学性质的影响[J]. 无机材料学报, 2006 , 21(2) : 459 -465 . DOI: 10.3724/SP.J.1077.2006.00459

Abstract

Pb0.92La0.08TiO3 films with thicknesses between 580 and 1830nm were deposited on ITO-coated glass substrates by using a sol-gel process under a relative low temperature of 580℃. The results obtained show that the films are crystallized well with pure perovskite polycrystalline structure. The surfaces of the films are smooth and condense. With the increase of the film thicknesses, the grain sizes and dielectric constants of the films increase. The dielectric constant-electric field curves are symmetric about zero bias axis, and show the hysteresis for all the films. In addition the coercive fields E c decreases with the film thicknesses increasing. All the films are transparent and the absorption edges shift to longer wavelength with increasing thicknesses of the films. The refractive index (n) and extinction coefficient (k) of 1830nm thick film are 2.39 and 0.009, respectively, at 633nm wavelength.

参考文献

1 Scott J F Ferroelectrics Reviews, 1998, 1: 1-5.
2 Polla D L, Frances L F. Annu. Rev. Mater. Sci., 1998, 28: 563-568.
3 Ding A L, Luo W G, Qiu P S, et al. J. Mater. Res., 1998, 13: 1266-1270.
4 Katsuhiko H, Chikara A. IEEE Photonics Tech. Lett., 2002, 14: 956-958.
5 Kawaguchi T, Adachi H, Setsune K, et al. Appl. Opt., 1984, 23: 2187-2191.
6 Higasgino H, Kawaguchi T, Adachi H, et al. J. Appl. Phys., 1985, 24: 284-286.
7 Jin G H, Zou Y K, Fuflyigin V. J. Lightwave Technol., 2000, 18: 807-812.
8 Tang P S, Towner D J, Meier A L, et al. IEEE Photonics Tech. Lett., 2004, 16: 1837-1839.
9 Roshan T, Yasunori O, Shigetoshi N. J. Lightwave Technol., 2003, 21: 1820-1826.
10 Kim Y, Erbil A, Boatner L A. Appl. Phys. Lett., 1996, 69: 2187-2189.
11 郑分刚, 朱卫东, 沈明荣, 等. 功能材料, 2001, 32: 124-126.
12 Bhaskar S, Majumder S B, Jain M, et al. Mater. Sci. and Engineering B, 2001 87: 178-190.
13 Song Z T, Chan H L W, Choy C L, et al. Microelectronic Engineering, 2003, 66: 887-890.
14 Udayakumar K R, Schuele P J, Chen J, et al. J. Appl. Phys., 1995, 77: 3981-3986.
15 Chen B, Yang H, Zhao L, et al. Appl. Phys Lett., 2004, 84: 583-585.
16 Bhaskar S, Majumder S B, Dobal P S, et al. J. Appl. Phys., 2001, 89: 5637-5643.
17 Zhou Q F, Chan H L W, Choy C L. Appl. Phys. A, 2000, 70: 293-297.
18 Gu H, Bao D, Wang S, et al. Thin Solid Films, 1996, 283: 81-83.
19 Thacher P D. Applied Optics, 1977, 16: 3210-3214.
20 Chopra S, Sharma S, Goel T C, et al. Appl. Surface Sci., 2004, 236: 321-325.
文章导航

/