研究论文

熔融碳酸盐燃料电池LiCoO2涂覆阴极的微观结构和性能

  • 李箭 ,
  • 蒲健 ,
  • 肖建中
展开
  • 华中科技大学材料科学与工程学院塑性成形模拟及模具技术国家重点实验室, 武汉 430074

收稿日期: 2005-01-31

  修回日期: 2005-04-27

  网络出版日期: 2006-03-20

Sol-gel LiCoO2 Coated Cathode for Molten Carbonate Fuel Cells

  • LI Jian ,
  • PU Jian ,
  • XIAO Jian-Zhong
Expand
  • State Key Lab of Plastic Forming Simulation and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China

Received date: 2005-01-31

  Revised date: 2005-04-27

  Online published: 2006-03-20

摘要

采用溶胶-凝胶技术, 制备了LiCoO2涂覆的熔融碳酸盐燃料电池NiO阴极. 研究了LiCoO2涂覆阴极的微观组织和在Li2CO3-K2CO3熔融碳酸盐中的溶解特性, 并对其电化学性能进行了测试. 结果表明LiCoO2涂层有效地降低了NiO在Li2CO3-K2CO3熔盐电解质中的溶解度和溶解速率, 对单电池的性能有所改善, 并在一定程度上抑制了Ni在电解质基板中的沉淀.

本文引用格式

李箭 , 蒲健 , 肖建中 . 熔融碳酸盐燃料电池LiCoO2涂覆阴极的微观结构和性能[J]. 无机材料学报, 2006 , 21(2) : 420 -426 . DOI: 10.3724/SP.J.1077.2006.00420

Abstract

Sol-gel technique was employed to apply LiCoO2 coating to the state-of-the-art cathode of molten carbonate fuel cells. The effect of LiCoO2 coating on the NiO dissolution in eutectic Li2CO3-K2CO3 molten carbonate, single cell performance and the Ni precipitation in electrolyte matrix was investigated. The results show that LiCoO2 coating can effectively reduce the solubility and dissolving ratio of NiO in Li2O3-K2CO3 molten salt, enhance the performance of the single cell, and inhibit Ni precipitation in the electrolyte matrix to certain extent.

参考文献

1 Baumgartner C E, Arendt R H, Iacovangeo C D, et al. J. Electrochem. Soc., 1984, 131 (10): 2217--2220.
2 Kunz H R, Pandolfo J W. J. Electrochem. Soc., 1992, 139 (6): 1549--1555.
3 Mugikura Y, Abe T, Yoshioka S, et al. J. Electrochem. Soc., 1995, 142 (9): 2971--2977.
4 Yoshioka S, Urushibata H. J. Electrochem. Soc., 1997, 144 (3): 815--822.
5 Kuk S T, Kwon H J, Chun H S, et al. In: Proceeding of Fuel Cell Seminar. Florida: Courtesy Associates Inc, 1996. 367--370.
6 Fukui T, Okawa H, Hotta T, et al. In: Proceeding of Fuel Cell Seminar. California: Courtesy Associates Inc, 1998. 210--213.
7 Nam S W, Hong S A, Oh I H, et al. In: Proceeding of Fuel Cell Seminar. California: Courtesy Associates Inc, 1998. 142--145.
8 Nam S W, Kim S G, Oh I H, et al. In: Hemmes K, Lindbergh G., Selman J R, et al, eds. Molten Carbonate Fuel Cell Technology V, New Jersey: The Electrochemical Society, 1999. 253--262.
9 Li F, Chen H, Wang C, et al. J. Electroanalytical. Chemistry., 2002, 531 (1): 53--60.
10 Hong M Z, Bae S C, Lee H S, et al. Electrochimica. Acta., 2003, 48 (23): 4213--4221.
11 Wijayasinghe A, Bergman B, Lagergren C. Electrochimica. Acta., 2004, 49 (26): 4709--4717.
12 Kim S G, Yoon S P, Han J, et al. Electrochimica. Acta., 2004, 49 (19): 3081--3089.
13 Ryu B H, Han J, Yoon S P, et al. Journal of Power Sources, 2004, 137 (1): 62--70.
14 Han J, Kim S G, Yoon S P, et al. Journal of Power Sources, 2002, 106 (1-2): 153--159.
15 Huang B, Li F, Yu Q, et al. Journal of Power Sources, 2004, 128 (2): 135--144.
16 Matsuzawa K, Mizusaki T, Mitsushima S, et al. Journal of Power Sources, 2005, 140 (2): 258--263.
17 Lagergren C, Lundblad A, Bergman B. J. Electrochem. Soc., 1994, 141 (11): 2959--2965.
18 Tennakoon T, Lingberg B, Bergman B. J. Electrochem. Soc., 1997, 144 (7): 2296--2301.
19 Giorgi L, Moreno A, Pozio A, et al. In: Hemmes K, Lindbergh G., Selman J R, et al, eds. Molten Carbonate Fuel Cells V, New Jersey: The Electrochemical Society, 1999. 265--286.
文章导航

/