研究论文

Pr6O11掺杂对ZnO-Bi2O3系压敏材料性能影响的研究

  • 朱建锋 ,
  • 罗宏杰 ,
  • 王芬
展开
  • 1. 陕西科技大学材料科学与工程学院, 咸阳 712081;
    2. 西安交通大学材料科学与工程学院, 西安 710049;
    3. 中国科学院上海硅酸盐研究所, 上海 200050)

收稿日期: 2005-02-24

  修回日期: 2005-06-02

  网络出版日期: 2006-03-20

Effects of Doped Pr6O11 on the Properties of ZnO-Bi2O3 System Varistors

  • ZHU Jian-Feng ,
  • LUO Hong-Jie ,
  • WANG Fen
Expand
  • 1. Shaanxi University of Science \& Technology, Xianyang 712081, China;
    2. Xi'an Jiaotong University, Xi'an 710049, China;
    3. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Received date: 2005-02-24

  Revised date: 2005-06-02

  Online published: 2006-03-20

摘要

采用稀土氧化物Pr6O11对ZnO-Bi2O3系压敏材料进行了改性研究, 探讨了Pr6O11对该材料
主要性能及微观结构的影响. 结果表明, Pr6O11掺杂量较小时, 能够显著提高ZnO压敏材料非线性系数, 减小漏电流, 并基本不影响压敏电压. 当Pr6O11掺杂达到一定量时, 在保持较高非线性系数, 较小漏电流的同时, 压敏电压与不含Pr6O11的ZnO压敏材料相比提高约60%; XRD、SEM等分析表明Pr6O11的引入改变了原有材料的微观结构组织, 使该材料微观结构中ZnO晶粒尺寸减小,
分布均匀、致密.

本文引用格式

朱建锋 , 罗宏杰 , 王芬 . Pr6O11掺杂对ZnO-Bi2O3系压敏材料性能影响的研究[J]. 无机材料学报, 2006 , 21(2) : 381 -386 . DOI: 10.3724/SP.J.1077.2006.00381

Abstract

The ZnO-Bi2O3 system varistors were modified by doping with rare-earth oxide Pr6O11 and their electrical properties and microstructure were investigated. The results of experiment indicate that adding a small scale of Pr6O11 would increase the nonlinear coefficient greatly and decrease the leakage current with no change in threshold voltage. When the Pr6O11 content reaches to 7wt%, the threshold voltage increases by about 60%, whereas the leakage current and nonlinear coefficient are unchangable. The SEM and XRD analyses testify that Pr6O11 makes the microstructure of the materials more uniform and compact.

参考文献

1 Clarke D R. Varistor Ceramics. Journal of the American Ceramics Society, 1999, 82 (3): 485--501.
2 Matsuoka M. Jpn. J. Appl. Phys., 1971, 10 (6): 736--746.
3 Wu Weihan, He Jinliang, Gao Yuming. The Property and Application of Nonlinearity Metal Oxide. Beijin: Qinghua University Press, 1999.
4 Lu Chung-Hsin, Ning Chyi, Wong His-Wu. Materials Chemistry and Physics, 2000, 62: 164--168.
5 Nahm Choon-Woo. Materials Chemistry and Physics, 2003, 80: 746--751.
6 Naoki Wakiya, Chun Sung-Yong, Kazuo Shinozaki, et al. Journal of Solid State Chemistry, 2000, 149: 349--353.
7 MoYihao, Li Biaorong, Zhou Guoliang. Semiconductor Ceramics and Component. Shanghai: Shanghai Technology Press, 1983.
8 Metz R, Delalu H, Vignalou J R. Materials Chemistry and Physics, 2003, 63: 157--162.
9 Zhu Jianfeng, Luo Hongjie, Wangfen. Journal of Shaanxi University of Science & Technology, 2004, 22 (5): 100--105.
10 Nguyen The Hung, Nguyen Dinh Quang, et al. J. Mater. Res., 2001, 16 (10): 2817--2823.
11 Brankovic Z, Branovic G, Poleti D, et al. Ceramics international, 2001, 27: 115--122.
12 Cerva H, Russwurm W. J. Am. Ceram. Soc., 1988, 71 (7): 522--529.
13 Zhou Dongxiang, Zhang Xuli, Li Biaorong, et al. Semiconductors Ceramics and Application. Wu Han: Huazhong University of Science \& Technology Press, 1991.
14 Leach C. International Journal of Inorganic Material, 2001, 3: 1117--1119.
15 Eda K, Iga A, Matsuoka M. Japanese Journal of Applied Physics, 1979, 18 (5): 997--998.
16 Henning D F K, Hartung R, Reijnen P J L. Jam Ceram Soc., 1990, 73 (3): 645--648.
17 Gupta T K, Carlson W G, Hower P L. Journal of Applied Physics, 1981, 52 (6): 4104--4111.
文章导航

/