研究论文

Ni掺杂对Co4-xNixSb12热电转换性能的影响

  • 赵雪盈 ,
  • 史迅 ,
  • 陈立东 ,
  • 唐新峰
展开
  • 1. 中国科学院上海硅酸盐研究所高性能陶瓷与超微结构国家重点实验室, 上海 200050;
    2. 中国科学院研究生院, 北京 100049;
    3. 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070

收稿日期: 2005-04-28

  修回日期: 2005-06-28

  网络出版日期: 2006-03-20

Influence of Ni Doping on the Thermoelectric Properties of Co4-xNixSb12

  • ZHAO Xue-Ying ,
  • SHI Xun ,
  • CHEN Li-Dong ,
  • TANG Xin-Feng
Expand
  • 1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, CAS, Shanghai 200050, China;
    2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China;
    3. The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Received date: 2005-04-28

  Revised date: 2005-06-28

  Online published: 2006-03-20

摘要

采用熔融法合成了Skutterudite化合物Co4-xNixSb12, 并研究了Ni掺杂对该化合物的高温热电性能的影响. 实验结果表明: 由于Ni向Skutterudite结构中提供电子, 导致化合物的载流子浓度和电导率随Ni置换量的增加而增加, Seebeck系数为负值, Seebeck系数的峰值温度随Ni置换量的增加向高温方向移动; Ni置换引入了电子-声子散射, 导致晶格热导率降低. 对于Skutterudite化合物Co4-xNixSb12, 得到的最大热电性能指数ZT约为0.55.

本文引用格式

赵雪盈 , 史迅 , 陈立东 , 唐新峰 . Ni掺杂对Co4-xNixSb12热电转换性能的影响[J]. 无机材料学报, 2006 , 21(2) : 392 -396 . DOI: 10.3724/SP.J.1077.2006.00392

Abstract

Skutterudite compound Co4-xNixSb12 was synthesized by the melting method and its thermal and electrical properties were measured in the temperature range of 300~850K. The carrier concentration and electrical conductivity increase with increasing Ni content substituting for Co. The absolute value of Seebeck coefficient decreases and T opt of Seebeck coefficient shifts to a higher temperature with the increase of Ni content. These different transport behaviors in the samples are ascribed to the introduction of extra electrons to the Skutterudite structure by Ni substitution. The lattice thermal conductivity of Co4-xNixSb12 is significantly depressed as compared to that of CoSb3 by introducing extra electron-phonon scattering mode. The maximum ZT value obtained for Co3.92Ni0.08Sb12 at 750K is about 0.55.

参考文献

1 刘宏, 王继杨. 功能材料, 2000, 31 (2): 116--118.
2 朱文, 杨君友, 崔昆, 等. 材料科学与工程, 2002, 20 (4): 585--588.
3 胡淑红, 朱铁军, 赵新兵, 等. 功能材料, 2001, 32 (2): 113--114.
4 刘宏, 王继杨, 张承乾, 等. 高技术通讯, 2001, (5): 104--107.
5 Sales B C, Mandrus D, Williams R K. Science, 1996, 272 (31): 1325--1328.
6 Sales B C, Mandrus D, Chakoumakos B C, et al. Phys. Rev. B, 1997, 56 (23): 15081--15089.
7 唐新峰, 陈立东, 後腾孝, 等. 物理学报, 2001, 50 (8): 1560--1565.
8 Bertini Luca, Stiewe Christian, Toprak Muhammet, et al. J. Appl. Phys., 2003, 93 (1): 438--447.
9 唐新峰, 陈立东,後腾孝, 等. 物理学报, 2000, 49 (6): 1120--1123.
10 Yang J, Meisner G P, Morelli D T, et al. Phys. Rev. B, 2000, 63 (1): 014410-1-11.
11 Katsuyama S, Shichijo Y, Lto M, et al. J. Appl. Phys., 1998, 84 (12): 6708--6712.
12 Anno H, Akai K, Nagao J, et al. Proc. Int. Conf. Thermoelectr. (20th), 2001. 101--104.
13 Dyck J S, Chen W, Yang J, et al. Proc. Int. Conf. Thermoelectr. (20 th), 2001. 65--68.
14 Yang J, Morelli D T, Meisner G P, et al. Phys. Rev. B, 2002, 65 (9): 094115-1-5.
15 Caillat T, Borshchevsky A, Fleurial J P. J. Appl. Phys., 1996, 80 (8): 4442--4449.
16 Katsuyama S, Watanabe M, Kuroki M, et al. J. Appl. Phys., 2003, 93 (5): 2758--2764.
文章导航

/