研究论文

Er3+在TeO2-WO3-La2O3玻璃中的光谱性质和热稳定性研究

  • 朱琳 ,
  • 徐铁峰 ,
  • 聂秋华 ,
  • 沈祥
展开
  • 宁波大学信息科学与工程学院, 宁波 315211

收稿日期: 2005-04-07

  修回日期: 2005-05-26

  网络出版日期: 2006-03-20

Spectral Properties and Thermal Stability of Erbium-doped TeO2-WO3-La2O3 Glass

  • ZHU Lin ,
  • XU Tie-Feng ,
  • NIE Qiu-Hua ,
  • SHEN Xiang
Expand
  • Faculty of Information Science and Engineering, Ningbo University, Ningbo 315211, China

Received date: 2005-04-07

  Revised date: 2005-05-26

  Online published: 2006-03-20

摘要

制备了掺铒的玻璃样品TeO2-WO3-La2O3. 测试了样品的吸收光谱、荧光光谱以及玻璃的热稳定性. 应用Judd-Ofelt理论计算了玻璃的三个强度参数Ωt(t=2、4、6), 电偶极跃迁谱线强度以及
磁偶极跃迁谱线强度, 分析了强度参数Ω2和玻璃成分变化的关系. 应用McCumber理论计算了Er3+在1.5μm处的受激发射截面. TeO2-WO3-La2O3玻璃在La2O3的含量>5mol%时, 未发现析晶开始温度(Tx), 说明这种玻璃材料适合于光纤的拉制. 研究结果表明TeO2-WO3-La2O3是制备宽带光纤放大器的理想基质材料.

本文引用格式

朱琳 , 徐铁峰 , 聂秋华 , 沈祥 . Er3+在TeO2-WO3-La2O3玻璃中的光谱性质和热稳定性研究[J]. 无机材料学报, 2006 , 21(2) : 351 -356 . DOI: 10.3724/SP.J.1077.2006.00351

Abstract

Er3+-codoped TeO2-WO3-La2O3 glasses were prepared. The thermal stability and spectral properties, such as absorption spectra, emission spectra of the glass samples were measured and investigated. Three intensity parameters, electric dipole transition, magnetic dipole transitions were calculated by Judd-Ofelt theory. The relationship of Ω2 and glass composition was analyzed. The emission cross-section of the 4I13/24I15/2 transition of Er3+ ions was calculated by McCumber theory. When La2O3 content was up to 5mol%, glass samples showed no onset crystallization temperature (Tx), indicating that they are saitable
for fiber drawing. The results show that TeO2-WO3-La2O3 glass has a good thermal stability and will be a promising host material for 1.5
μm broadband amplification.

参考文献

1. Mori A, Ohishi Y, Sudo S. Electron. Lett., 1997, 33 (10): 863--864.
2. Le Neindre, Jiang S, Hwang B C. J. Non-cryst. Solids.,
1999, 255: 97--101.
3. Wang J S, Vogel E M, Snitzer E. Opt. Mater., 1994, 3:
187--203.
4. Ding Y, Jiang S, Hwang B C, et al. Opt. Mater., 2000, 15:
123--130.
5. Yamada M, Mori A, Kobayashi K, et al. IEEE Photonics Technology
Letters, 1998, 10 (9): 1244--1250.
6. Hocd\acute e S, Jiang S, Peng X, et al. Opt. Mater.,
2004, 25: 149--153.
7. 邱关明, 等编. 稀土光学玻璃, 北京: 兵器工业出版社, 1989. 85--89.
8. Judd B R. Phys. Rev., 1962, 127 (3): 750--760.
9. Ofelt G S. J. Chem. Phys., 1962, 37 (3): 511--520.
10. Dhiraj K S, John B G, Bahram Z, et al. J. Appl. Phys.,
2003, 93: 2041--2043.
11. Tanabe S, Ohyagi T, Soga N, et al. phys. Rev. B., 1992,
46: 3305--3310.
12. Weber M J. Phys. Rev., 1967, 156 (2): 231--240.
13. Ebendorff-Heidepriem H, Ehrt D. J. Non-cryst. Solids.,
1996, 208: 205--210.
14. Ebendorff-Heidepriem H, Ehrt D, Bettinelli M, et al. J. Non-
cryst. Solids., 1998, 240: 66--71.
15. Shaltout I, Tang Y, Braunstein R, et al. J. Phys. Chem.
Solids., 1995, 56: 141--146.
16. Yang J, Dai S, Zhou Y, et al. J. Appl. Phys., 2003, 93
(2): 977--983.
17. Tanabe S, Hanada T. J. Non-cryst. Solids., 1996, 196:
101--105.
18. McCumber D E. Phys. Rev. A, 1964, 134: 299--310.
19. Miniscalo W J, Quimby R S. Opt. Lett., 1991, 16: 258
--263.
20. Neindre L L, Jiang S, Hwang B C. J. Non-cryst. Solids.,
1999, 255: 97--101.
21. 西北轻工业学院主编. 玻璃工艺学. 北京: 中国轻工业出版社, 1982. 22-
-23.

文章导航

/