研究论文

载氢与掺锗石英光纤的光致折射率改变

  • 李剑芝 ,
  • 姜德生
展开
  • 1.石家庄铁道学院大型结构健康诊断与控制重点实验室, 石家庄 050043

    2.武汉理工大学光纤传感技术研究中心, 武汉 430070

收稿日期: 2005-02-21

  修回日期: 2005-04-11

  网络出版日期: 2006-03-20

Hydrogen Loading and Photolytic Index Changes in Germanosilicate Fiber

  • LI Jian-Zhi ,
  • JIANG De-Sheng
Expand
  • Structural HealthMonitoring and Control Institute Shijiazhuang Railway Institute, Shijiazhuang 050043, China

Received date: 2005-02-21

  Revised date: 2005-04-11

  Online published: 2006-03-20

摘要

对载氢掺锗石英光纤的紫外光敏特性以及载氢条件对光纤紫外光敏性的影响进行了系统地实验研究. 实验结果表明: ①载氢光纤的光致折射率改变随紫外曝光时间的变化规律( Δn=3.3×10-4t0.31689)是先呈指数增长到达一定的时间基本达到饱和, 如果继续照射, 光致折射率改变继续增大, 并对紫外光敏机理进行了讨论; ②随着载氢压力的增大, 光纤的紫外光敏性呈正比例增大, 两者之间的关系为Δn=1.34times10-5+4.66×10-5P; ③掺锗石英光纤的紫外光敏性的大小随着载氢时间的延长, 呈指数增长, 最后达到饱和.

本文引用格式

李剑芝 , 姜德生 . 载氢与掺锗石英光纤的光致折射率改变[J]. 无机材料学报, 2006 , 21(2) : 345 -350 . DOI: 10.3724/SP.J.1077.2006.00345

Abstract

In this paper, UV photosensitivity of a hydrogen-loaded germanosilicate fiber and the relation between photosensitivity and the hydrogen-loading condition were studied experimentally. Experimental results indicate that: ① the curve of refractive index changes in the hydrogen-loaded fibers is exponential type (Δn=3.3×10-4t0.31689), at a certain point, refractive index changes reach saturated. This power law accords with the model proposed by Patrick H. However, the refractive index changes of the hydrogen-loading fibers continue to increase when exposed time prolongs; ② the photosensitivity changes are exponential to hydrogen-loading time until they reach saturated; ③ the photosensitivity changes are proportional to the hydrogen-loading pressure.

参考文献

1. Hill K O, Fujii Y, Johnson D C, et al. App. Phys. Lett., 1978, 32: 647--649.
2. Bennion I, Williams J A R, Zhang L, et al. Optical and Quantum Electronics, 1996, 28 (2): 93--135.
3. Kersey A D, Davis M A, Patrick H J, et al. Journal of Lightwave Technology, 1997, 15 (8): 1442--1463.
4. Swart P L, Chtcherbakov A A, Joubert W L, et al. Optics Communications, 2003, 217: 189--196.
5. Patrick H, Gilbert S L. Optics Letters, 1993, 18: 1484--1486.
6. Atkins R M, Mizrahi V, Erdogan T. Electronics Letters, 1993, 29 (4): 385--387.
7. Paul J. Lemaire. Optical Engineering, 1991, 30 (6): 780--789.
8. Grubsky V, Starodubov D S, Feinberg J. Optical Letters, 1999, 24 (11): 729--731.
9. Lemaire P J, Atkins R M, Mizrahi V, et al. Electronic Letters, 1993, 29 (13): 1191--1193.
10. Shackelford J F, Studt P L, Fulrath R M. J. Appl. Phys., 1972, 43 (4): 1619--1626.
11. Liou C L, Wang L A, Shih M C, et al. Applied Physics A: Materials Science
12. Lemaire P J. Optical Engineering, 1991, 30 (6): 780--789.

文章导航

/