综述

PZT陶瓷的低温烧结研究进展

  • 姜昆 ,
  • 李乐天 ,
  • 郑木鹏 ,
  • 胡永明 ,
  • 潘勤学 ,
  • 吴超峰 ,
  • 王轲
展开
  • 1.湖北大学 微电子学院, 微纳电子材料与器件湖北省重点实验室, 武汉 430062
    2.北京工业大学 材料科学与工程学院, 北京 100124
    3.北京理工大学 机械与车辆学院, 北京 100081
    4.桐乡清锋科技有限公司, 嘉兴 314501
    5.清华大学 材料科学与工程学院, 北京 100084
姜 昆(2000-), 男, 硕士研究生. E-mail: 202321119012904@stu.hubu.edu.cn
郑木鹏, 副研究员. E-mail: mpzheng@bjut.edu.cn;
胡永明, 教授. E-mail: huym@hubu.edu.cn

收稿日期: 2024-12-10

  修回日期: 2025-02-25

  网络出版日期: 2025-03-06

基金资助

国家自然科学基金(U24A20203);国家自然科学基金(52472117);国家重点研发计划(2020YFA0711700)

Research Progress on Low-temperature Sintering of PZT Ceramics

  • JIANG Kun ,
  • LI Letian ,
  • ZHENG Mupeng ,
  • HU Yongming ,
  • PAN Qinxue ,
  • WU Chaofeng ,
  • WANG Ke
Expand
  • 1. Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, China
    2. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
    3. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    4. Tongxiang Tsingfeng Technology Co., Ltd., Jiaxing 314501, China
    5. School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
JIANG Kun (2000-), male, Master candidate. E-maill: 202321119012904@stu.hubu.edu.cn
ZHENG Mupeng, associate professor. E-mail: mpzheng@bjut.edu.cn;
HU Yongming, professor. E-mail: huym@hubu.edu.cn.

Received date: 2024-12-10

  Revised date: 2025-02-25

  Online published: 2025-03-06

Supported by

National Natural Science Foundation of China(U24A20203);National Natural Science Foundation of China(52472117);National Key R&D Program of China(2020YFA0711700)

摘要

Pb(Zr,Ti)O3(PZT)陶瓷以其优异的压电、铁电和热释电性能, 在国防、医疗、通信及能源转换等领域发挥着至关重要的作用。然而PZT陶瓷的烧结温度通常超过1200 ℃, 这不仅能源消耗高, 还会造成PbO大量挥发, 使PZT陶瓷偏离化学计量比而影响其电学性能。此外, 压电叠层器件的迅速发展还进一步要求PZT陶瓷能与成本较低的金属电极在低温下进行共烧。针对上述问题, 研究人员对PZT压电陶瓷的低温烧结进行了深入研究, 将PZT陶瓷的烧结温度降低至1000 ℃以下。本文从PZT陶瓷的结构特点、物理性能出发, 对低温烧结技术在PZT陶瓷领域的研究现状进行了综述, 基于低温烧结原理介绍了特种烧结技术(放电等离子体烧结、热压烧结和冷烧结)和引入助烧剂(形成固溶体、液相烧结和过渡液相烧结)的低温烧结现状, 系统总结了上述烧结技术对PZT压电陶瓷微观结构和电学性能的影响规律。针对引入助烧剂导致电学性能劣化的问题及可能的解决途径进行了探讨, 并对PZT陶瓷低温烧结技术的发展趋势进行了展望。

本文引用格式

姜昆 , 李乐天 , 郑木鹏 , 胡永明 , 潘勤学 , 吴超峰 , 王轲 . PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025 , 40(6) : 627 -638 . DOI: 10.15541/jim20240513

Abstract

Pb(Zr,Ti)O3 (PZT) ceramics play a crucial role in fields such as national defense, healthcare, communication, and energy conversion due to their excellent piezoelectric, ferroelectric, and pyroelectric properties. However, the sintering temperature of PZT ceramics usually exceeds 1200 ℃, resulting in high energy consumption and a large amount of PbO volatilization. This volatilization disrupts the stoichiometric balance of PZT ceramics, thereby adversely affecting their electrical properties. Moreover, the rapid development of piezoelectric multilayer devices further requires PZT ceramics to be co-sintered with low-cost metal electrodes at low temperatures. To address these challenges, researchers have extensively investigated the low-temperature sintering of PZT piezoelectric ceramics, successfully reducing the sintering temperature of PZT ceramics to below 1000 ℃, which has attracted widespread attention. Starting from the structural characteristics and physical properties of PZT ceramics, this article reviews the current research status of low-temperature sintering technology in the field of PZT ceramics. It mainly introduces the current status of low-temperature sintering techniques, including spark plasma sintering, hot-pressing sintering, cold sintering, as well as the use of sintering aids such as forming solid solutions, liquid-phase sintering, and transient liquid-phase sintering. The influence of these sintering techniques on the microstructure and electrical properties of PZT piezoelectric ceramics is systematically summarized. The issue of electrical performance degradation caused by sintering aids and possible solutions are analyzed. At last, future development trends of low-temperature sintering technologies for PZT ceramic are explored.

参考文献

[1] HAO J G, LI W, ZHAI J W, et al. Progress in high-strain perovskite piezoelectric ceramics. Materials Science and Engineering: R: Reports, 2019, 135: 1.
[2] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018, 98: 552.
[3] CHEN L, LIU H, QI H, et al. High-electromechanical performance for high-power piezoelectric applications: fundamental, progress, and perspective. Progress in Materials Science, 2022, 127: 100944.
[4] DONG Y Z, ZOU K, LIANG R H, et al. Review of BiScO3-PbTiO3 piezoelectric materials for high temperature applications: fundamental, progress, and perspective. Progress in Materials Science, 2023, 132: 101026.
[5] WANG B, LIU W, ZHAO T L, et al. Promising lead-free BiFeO3-BaTiO3 ferroelectric ceramics: optimization strategies and diverse device applications. Progress in Materials Science, 2024, 146: 101333.
[6] JAFFE B, ROTH R S, MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics. Journal of Applied Physics, 1954, 25(6): 809.
[7] JAFFE B, ROTH R S, MARZULLO S. Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate- lead oxide: tin oxide and lead titanate-lead hafnate. Journal of Research of the National Bureau of Standards, 1955, 55(5): 239.
[8] 北京恒州博智国际信息咨询有限公司.2024—2030年全球与中国压电陶瓷行业调研及趋势分析报告: 3889852, 北京: 北京恒州博智国际信息咨询有限公司, 2024: 122.
[9] KINGON A I, CLARK J B. Sintering of PZT ceramics: II, effect of PbO content on densification kinetics. Journal of the American Ceramic Society, 1983, 66(4): 256.
[10] RYU J, CHOI J J, KIM H E. Effect of heating rate on the sintering behavior and the piezoelectric properties of lead zirconate titanate ceramics. Journal of the American Ceramic Society, 2001, 84(4): 902.
[11] FAN H Q, KIM H E. Effect of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics. Journal of the American Ceramic Society, 2001, 84(3): 636.
[12] HOU Y D, ZHU M K, WANG H, et al. Effects of atmospheric powder on microstructure and piezoelectric properties of PMZN-PZT quaternary ceramics. Journal of the European Ceramic Society, 2004, 24(15/16): 3731.
[13] KONG L B, MA J, HUANG H, et al. Effect of excess PbO on microstructure and electrical properties of PLZT7/60/40 ceramics derived from a high-energy ball milling process. Journal of Alloys and Compounds, 2002, 345(1/2): 238.
[14] JAFFE B, COOK W R, JAFFE H. The piezoelectric effect in ceramics// JAFFE B, COOK W R, JAFFE H. Piezoelectric ceramics. New York: Elsevier, 1971: 7-21.
[15] SOARES M R, SENOS A M R, MANTAS P Q. Phase coexistence region and dielectric properties of PZT ceramics. Journal of the European Ceramic Society, 2000, 20(3): 321.
[16] GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters, 2000, 84(23): 5423.
[17] GENG W P, LIU Y, MENG X J, et al. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials, 2015, 27(20): 3165.
[18] BABU T A, RAMESH K V, BADAPANDA T, et al. Structural and electrical studies of excessively Sm2O3 substituted soft PZT nanoceramics. Ceramics International, 2021, 47(22): 31294.
[19] YAN S H, SUN C C, CUI Q Y, et al. Dielectric, piezoelectric and DC bias characteristics of Bi-doped PZT multilayer ceramic actuator. Materials Chemistry and Physics, 2020, 255: 123605.
[20] ZHAO C H, HOU D, CHUNG C C, et al. Deconvolved intrinsic and extrinsic contributions to electrostrain in high performance, Nb-doped Pb(ZrxTi1-x)O3 piezoceramics (0.50≤x≤0.56). Acta Materialia, 2018, 158: 369.
[21] LI Q, WANG X, WANG F A, et al. Effect of neodymium substitution on crystalline orientation, microstructure and electric properties of Sol-Gel derived PZT thin films. Ceramics International, 2018, 44(7): 7709.
[22] GUPTA A K, SIL A. Dielectric and energy storage characteristics of 0.2, 0.4, 0.6, 0.8 wt% Cr2O3 doped PbZr0.52Ti0.48O3 ceramics synthesized by spark plasma sintering. Materials Science and Engineering: B, 2022, 281: 115738.
[23] THAKRE A, KUMAR A, JEONG D Y, et al. Enhanced mechanical quality factor of 32 mode Mn doped 71Pb(Mg1/3Nb2/3)O3- 29PbZrTiO3 piezoelectric single crystals. Electronic Materials Letters, 2020, 16(2): 156.
[24] LI L L, LIU J T, XU J, et al. Effect of MnO2 on the microstructure and electrical properties of 0.83Pb(Zr0.5Ti0.5)O3-0.11Pb(Zn1/3Nb2/3)O3- 0.06Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics. Ceramics International, 2020, 46(1): 180.
[25] BIESUZ M, GRASSO S, SGLAVO V M. What’s new in ceramics sintering? A short report on the latest trends and future prospects. Current Opinion in Solid State and Materials Science, 2020, 24(5): 100868.
[26] TAKAHASHI S. Sintering Pb(Zr,Ti)O3 ceramics at low temperature. Japanese Journal of Applied Physics, 1980, 19(4): 771.
[27] LI L T, DENG W T, CHAI J H, et al. Lead zirconate titanate ceramics and monolithic piezoelectric transformer of low firing temperature. Ferroelectrics, 1990, 101(1): 193.
[28] ZHENG M P, HOU Y D, YAN X D, et al. A highly dense structure boosts energy harvesting and cycling reliabilities of a high- performance lead-free energy harvester. Journal of Materials Chemistry C, 2017, 5(31): 7862.
[29] LI C C, YIN C Z, KHALIQ J, et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances. ACS Sustainable Chemistry & Engineering, 2021, 9(43): 14461.
[30] LIU J, SHEN Z J, NYGREN M, et al. SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. Journal of the European Ceramic Society, 2006, 26(15): 3233.
[31] ZHANG S P, WANG X H, WANG H, et al. Grain boundary region and local piezoelectric response of BiScO3-PbTiO3 nanoceramics prepared by combination of SPS and two-step sintering. Journal of the European Ceramic Society, 2014, 34(10): 2317.
[32] NIEMIEC P, BOCHENEK D, BRZEZI?SKA D. Effect of various sintering methods on the properties of PZT-type ceramics. Ceramics International, 2023, 49(22): 35687.
[33] AMORíN H, RICOTE J, JIMéNEZ R, et al. Submicron and nanostructured 0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3 ceramics by hot pressing of nanocrystalline powders. Scripta Materialia, 2008, 58(9): 755.
[34] BRZEZI?SKA D, BOCHENEK D, ZUBKO M, et al. Properties of Sn-doped PBZT ferroelectric ceramics sintered by hot-pressing method. Materials, 2024, 17(20): 5072.
[35] DENG B Y, MA Y M, CHEN T X, et al. Elevating electrical properties of (K, Na)NbO3 ceramics via cold sintering process and post-annealing. Journal of the American Ceramic Society, 2022, 105(1): 461.
[36] GALOTTA A, SGLAVO V M. The cold sintering process: a review on processing features, densification mechanisms and perspectives. Journal of the European Ceramic Society, 2021, 41(16): 1.
[37] SI M M, HAO J Y, ZHAO E D, et al. Preparation of zinc oxide/poly-ether-ether-ketone (PEEK) composites via the cold sintering process. Acta Materialia, 2021, 215: 117036.
[38] JIA Y J, SU X H, WU Y J, et al. Fabrication of lead zirconate titanate ceramics by reaction flash sintering of PbO-ZrO2-TiO2 mixed oxides. Journal of the European Ceramic Society, 2019, 39(13): 3915.
[39] ARYA K S, SINGH R P, CHAKRABARTI T. Novel liquid-phase flash sintering of lead zirconate titanate piezo-ceramics. Journal of the American Ceramic Society, 2024, 107(12): 8007.
[40] ARYA K S, KALYANI A K, CHAKRABARTI T. Flash sintering of lead zirconate titanate (PZT) with minimal lead oxide loss and enhanced dielectric properties. Journal of the European Ceramic Society, 2024, 44(5): 2797.
[41] CHENG L Q, XU Z, THONG H C, et al. Influence of spark plasma sintering temperature on piezoelectric properties of PZT-PMnN piezoelectric ceramics. Journal of Materials Science: Materials in Electronics, 2019, 30(6): 5691.
[42] CHENG L Q, XU Z, ZHAO C L, et al. Significantly improved piezoelectric performance of PZT-PMnN ceramics prepared by spark plasma sintering. RSC Advances, 2018, 8(62): 35594.
[43] LIU K, WANG W, LIU Q, et al. Photostriction properties of PLZT (4/52/48) ceramics sintered by SPS. Ceramics International, 2019, 45(2): 2097.
[44] HAERTLING G H, LAND C E. Hot-pressed (Pb, La)(Zr, Ti)O3 ferroelectric ceramics for electrooptic applications. Journal of the American Ceramic Society, 1971, 54(1): 1.
[45] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: a novel technique for low-temperature ceramic processing of ferroelectrics. Journal of the American Ceramic Society, 2016, 99(11): 3489.
[46] GUO D J, GUO D H, BAKER A L, et al. Cold sintering: a paradigm shift for processing and integration of ceramics. Angewandte Chemie International Edition, 2016, 55(38): 11457.
[47] YANG C, LI J P, SHI H F, et al. Effects of the liquid phase content on the microstructure and properties of the ZrW2O8 ceramics with negative thermal expansion fabricated by the cold sintering process. Journal of the European Ceramic Society, 2020, 40(15): 6079.
[48] HéRISSON DE BEAUVOIR T, TSUJI K, ZHAO X T, et al. Cold sintering of ZnO-PTFE: utilizing polymer phase to promote ceramic anisotropic grain growth. Acta Materialia, 2020, 186: 511.
[49] LI Y Q, ZHENG M P, ZHU M K, et al. Microwave dielectric properties and low-temperature sintering mechanism in (Ca, Bi)(Mo, V)O4 ceramics. Journal of Alloys and Compounds, 2021, 889: 161644.
[50] LI Y Q, ZHENG M P, ZANG M Y, et al. Cold sintering co-firing of (Ca, Bi)(Mo, V)O4-PTFE composites in a single step. Journal of the American Ceramic Society, 2022, 105(10): 6262.
[51] TSUJI K, FAN Z M, BANG S H, et al. Cold sintering of the ceramic potassium sodium niobate, (K0.5Na0.5)NbO3, and influences on piezoelectric properties. Journal of the European Ceramic Society, 2022, 42(1): 105.
[52] WANG D X, DURSUN S, GAO L S, et al. Fabrication of bimorph lead zirconate titanate thick films on metal substrates via the cold sintering-assisted process. Acta Materialia, 2020, 195: 482.
[53] WANG D X, GUO H Z, MORANDI C S, et al. Cold sintering and electrical characterization of lead zirconate titanate piezoelectric ceramics. APL Materials, 2018, 6(1): 016101.
[54] NIU L, HAN X T, WANG H T, et al. Flash sintering of lead zirconate titanate ceramics under high voltage at room temperature. Journal of the European Ceramic Society, 2024, 44(10): 6169.
[55] KAMIYA T, SUZUKI T, TSURUMI T, et al. Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3. Japanese Journal of Applied Physics, 1992, 31(9S): 3058.
[56] WANG H H, MA M, XIA S, et al. Giant piezoelectric properties of the [110]-oriented PZT-5H single crystals grown by solid state crystal growth. Journal of Materials Chemistry C, 2023, 11(7): 2664.
[57] GAO X Y, JIN H N, XIN B J, et al. Low temperature sintering of Li2CO3 added Pb(Ni1/3Nb2/3)-Pb(Zr,Ti)O3 ceramics with high piezoelectric properties. Journal of Alloys and Compounds, 2022, 892: 162132.
[58] SANGAWAR S R, PRAVEENKUMAR B. Structural and electrical properties of low temperature sintered PZT ceramics. Ferroelectrics, 2017, 517(1): 66.
[59] CORKER D L, WHATMORE R W, RINGGAARD E, et al. Liquid-phase sintering of PZT ceramics. Journal of the European Ceramic Society, 2000, 20(12): 2039.
[60] KIM B S, JI J H, KOH J H. Improved strain and transduction values of low-temperature sintered CuO-doped PZT-PZNN soft piezoelectric materials for energy harvester applications. Ceramics International, 2021, 47(5): 6683.
[61] OUCHI H, NAGANO K, HAYAKAWA S. Piezoelectric properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3 solid solution ceramics. Journal of the American Ceramic Society, 1965, 48(12): 630.
[62] 侯育冬, 郑木鹏. 压电陶瓷掺杂调控. 北京: 科学出版社, 2018.
[63] ZHANG J B, LIU H, SUN S D, et al. Crystal structure and actuation mechanisms in morphotropic phase boundary Pb(Zn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 piezoelectric ceramic. Journal of the American Ceramic Society, 2021, 104(6): 2621.
[64] CHANG L M, HOU Y D, ZHU M K, et al. Effect of sintering temperature on the phase transition and dielectrical response in the relaxor-ferroelectric-system 0.5PZN-0.5PZT. Journal of Applied Physics, 2007, 101(3): 034101.
[65] ZHENG M P, HOU Y, ZHU M K, et al. Shift of morphotropic phase boundary in high-performance fine-grained PZN-PZT ceramics. Journal of the European Ceramic Society, 2014, 34(10): 2275.
[66] SEO S B, LEE S H, YOON C B, et al. Low-temperature sintering and piezoelectric properties of 0.6Pb(Zr0.47Ti0.53)O3·0.4Pb(Zn1/3Nb2/3)O3 ceramics. Journal of the American Ceramic Society, 2004, 87(7): 1238.
[67] HOU Y D, CHANG L M, ZHU M K, et al. Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low-temperature sintered 0.5PZN-0.5PZT systems. Journal of Applied Physics, 2007, 102(8): 084507.
[68] ZHENG M P, HOU Y D, GE H Y, et al. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN-0.8PZT ceramics. Journal of the European Ceramic Society, 2013, 33(8): 1447.
[69] ZHENG M P, HOU Y D, GE H Y, et al. The formation of (Zn, Ni)TiO3 secondary phase in NiO-modified Pb(Zn1/3Nb2/3)O3- PbZrO3-PbTiO3 ceramics. Scripta Materialia, 2013, 68(9): 707.
[70] YOO J, LEE C, JEONG Y, et al. Microstructural and piezoelectric properties of low temperature sintering PMN-PZT ceramics with the amount of Li2CO3 addition. Materials Chemistry and Physics, 2005, 90(2/3): 386.
[71] ZHU Z G, LI B S, LI G R, et al. Microstructure and piezoelectric properties of PMS-PZT ceramics. Materials Science and Engineering: B, 2005, 117(2): 216.
[72] LI S, FU J, ZUO R Z. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors. Ceramics International, 2021, 47(14): 20117.
[73] LI J P, HUANG H, MORITA T. Stepping piezoelectric actuators with large working stroke for nano-positioning systems: a review. Sensors and Actuators A: Physical, 2019, 292: 39.
[74] TAMBURRANO P, SCIATTI F, PLUMMER A R, et al. A review of novel architectures of servovalves driven by piezoelectric actuators. Energies, 2021, 14(16): 4858.
[75] GAO X Y, YANG J K, WU J G, et al. Piezoelectric actuators and motors: materials, designs, and applications. Advanced Materials Technologies, 2020, 5(1): 1900716.
[76] AABID A, HRAIRI M, ALI S J M, et al. Review of piezoelectric actuator applications in damaged structures: challenges and opportunities. ACS Omega, 2023, 8(3): 2844.
[77] CHEN J Y, TEO E H T, YAO K. Electromechanical actuators for haptic feedback with fingertip contact. Actuators, 2023, 12(3): 104.
[78] MA X F, LIU J K, ZHANG S J, et al. Recent trends in bionic stepping piezoelectric actuators for precision positioning: a review. Sensors and Actuators A: Physical, 2023, 364: 114830.
[79] SEO I T, LEE T G, KIM D H, et al. Multilayer piezoelectric haptic actuator with CuO-modified PZT-PZNN ceramics. Sensors and Actuators A: Physical, 2016, 238: 71.
[80] ZHANG J, CHEN Y J, GUO Y X, et al. Low-temperature co-fired PNN-PZT-based multilayer piezoelectric actuator with low cost and high reliability. Journal of the European Ceramic Society, 2024, 44(15): 116744.
文章导航

/