研究论文

氧化钛涂层润湿性对免疫成骨性能的影响规律

  • 上官丽 ,
  • 聂晓双 ,
  • 叶奎材 ,
  • 崔苑苑 ,
  • 乔玉琴
展开
  • 1.上海大学 材料科学与工程学院, 上海 200444
    2.中国科学院 上海硅酸盐研究所, 高性能陶瓷与超微结构国家重点实验室, 上海 200050
    3.中国科学院大学 材料科学与光电工程研究中心, 北京 100049
    4.上海大学 生命科学学院, 200444
上官丽(1997-), 女, 硕士研究生. E-mail: 20724695@shu.edu.cn
乔玉琴, 副研究员. E-mail: qiaoyq@mail.sic.ac.cn;
崔苑苑, 副教授, E-mail: cui-yy@shu.edu.cn

收稿日期: 2023-05-19

  修回日期: 2023-06-16

  网络出版日期: 2023-06-28

基金资助

国家自然科学基金(32171344);上海自然科学基金面上项目(20ZR1465100);上海市生物医药科技支撑专项(20S31903300)

Effects of Surface Wettability of Titanium Oxide Coatings on Osteoimmunomodulatory Properties

  • SHANGGUAN Li ,
  • NIE Xiaoshuang ,
  • YE Kuicai ,
  • CUI Yuanyuan ,
  • QIAO Yuqin
Expand
  • 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
    2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
    3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
    4. School of Life Sciences, Shanghai University, Shanghai 200444, China
SHANGGUAN Li (1997-), female, Master candidate. E-mail: 20724695@shu.edu.cn
QIAO Yuqin, associate professor. E-mail: qiaoyq@mail.sic.ac.cn;
CUI Yuanyuan, associate professor. E-mail: cui-yy@shu.edu.cn

Received date: 2023-05-19

  Revised date: 2023-06-16

  Online published: 2023-06-28

Supported by

National Natural Science Foundation of China(32171344);Shanghai Natural Science Foundation(20ZR1465100);Shanghai Science and Technology Pillar Program for Biomedicine(20S31903300)

摘要

钛及其合金以其优异的机械性能和生物相容性而被广泛应用作硬组织植入器械, 但其表面缺乏生物活性以及植入后的炎症反应易导致骨整合不佳。本研究利用不同气氛中的热处理工艺调控氧化钛涂层的润湿性, 并研究表面润湿性能对免疫反应和成骨性能的影响规律。研究结果表明, 与亲水(接触角~10º)的氧化钛涂层相比, 处于亲水/疏水临界状态的氧化钛涂层(接触角’90º), 在仅培养巨噬细胞时, 抑制了巨噬细胞向M1促炎方向极化; 在共培养小鼠骨髓间充质干细胞和巨噬细胞时, 促进了巨噬细胞向M2抗炎方向极化, 同时显著上调了骨髓间充质干细胞成骨相关标记物的基因表达, 显示出更好的免疫促成骨性能。

本文引用格式

上官丽 , 聂晓双 , 叶奎材 , 崔苑苑 , 乔玉琴 . 氧化钛涂层润湿性对免疫成骨性能的影响规律[J]. 无机材料学报, 2023 , 38(12) : 1457 -1565 . DOI: 10.15541/jim20230242

Abstract

Titanium and its alloys have been widely used as hard tissue implants due to their excellent mechanical properties and biocompatibilities. However, the lack of biological activity on its surface and the inflammatory reaction after implantation can easily lead to unsatisfactory osseointegration. In this work, the wettability of titanium oxide coatings was modulated by annealing in different atmospheres, and the effects of surface wettability on polarization of macrophages and osteogenic differentiation of mBMSCs were studied. The results showed that, compared to the hydrophilic titanium oxide coating (~10º, PEO-A), the titanium oxide coating with contact angle about 90º (PEO-A-V) inhibited the polarization of macrophages towards M1 pro-inflammatory direction under the mono-culture condition. However, under the co-culture condition, the titanium oxide coating with contact angle about 90º promoted macrophage polarization towards M2 and significantly upregulated gene expressions of osteogenic markers related to mBMSCs, indicating better immunomodulatory effects on osteogenic differentiation of mBMSCs.

参考文献

[1] HUANG L, NING C, DING D, et al. Wettability and in vitro bioactivity of doped TiO2 nanotubes. Journal of Inorganic Materials, 2010, 25(7): 775.
[2] HOQUE M E, SHOWVA N-N, AHMED M, et al. Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. Heliyon, 2022, 8(11): e11300.
[3] NIE X, ZHANG X, LEI B, et al. Regulation of magnesium matrix composites materials on bone immune microenvironment and osteogenic mechanism. Frontiers in Bioengineering and Biotechnology, 2022, 10: 842706.
[4] DU P, LI K, ZHU B, et al. Development of non-toxic low-cost bioactive porous Ti-Fe-Si bulk metallic glass with bone-like mechanical properties for orthopedic implants. Journal of Materials Research and Technology, 2022, 17: 1319.
[5] MI B, CHEN L, XIONG Y, et al. Osteoblast/osteoclast and immune cocktail therapy of an exosome/drug delivery multifunctional hydrogel accelerates fracture repair. ACS Nano, 2022, 16(1): 771.
[6] GEURTZEN K, LóPEZ-DELGADO A C, DUSEJA A, et al. Laser-mediated osteoblast ablation triggers a pro-osteogenic inflammatory response regulated by reactive oxygen species and glucocorticoid signaling in zebrafish. Development, 2022, 149(8): dev199803.
[7] LIANG H, JIN C, MA L, et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Applied Materials & Interfaces, 2019, 11(44): 41758.
[8] PAJARINEN J, LIN T, GIBON E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196: 80.
[9] SHEN H, SHI J, ZHI Y, et al. Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization. Materials Science and Engineering: C, 2021, 118: 111471.
[10] HOTCHKISS K M, SOWERS K T, OLIVARES-NAVARRETE R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dental Materials, 2019, 35(1): 176.
[11] JIANG P, ZHANG Y, HU R, et al. Advanced surface engineering of titanium materials for biomedical applications: from static modification to dynamic responsive regulation. Bioactive Materials, 2023, 27: 15.
[12] ZHENG X, CHEN L, TAN J, et al. Effect of micro/nano-sheet array structures on the osteo-immunomodulation of macrophages. Regenerative Biomaterials, 2022, 9: rbac075.
[13] LIANG W, GAO M, LOU J, et al. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. Journal of Materials Chemistry B, 2020, 8(15): 3038.
[14] MAO L, BAI L, WANG X, et al. Enhanced cell osteogenesis and osteoimmunology regulated by piezoelectric biomaterials with controllable surface potential and charges. ACS Applied Materials & Interfaces, 2022, 14(39): 44111.
[15] HUANG Q, OUYANG Z, TAN Y, et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomaterialia, 2019, 100: 415.
[16] HE Y, YAO M, ZHOU J, et al. Mg(OH)2 nanosheets on Ti with immunomodulatory function for orthopedic applications. Regenerative Biomaterials, 2022, 9: rbac027.
[17] LIU J, SHEN X, TANG S, et al. Improvement of rBMSCs responses to poly(propylene carbonate) based biomaterial through incorporation of nanolaponite and surface treatment using sodium hydroxide. ACS Biomaterials Science & Engineering, 2020, 6(1): 329.
[18] FERREIRA S A, GAMA F M, VILANOVA M. Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9(2): 159.
[19] XIAN P, CHEN Y, GAO S, et al. Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application. Surface and Coatings Technology, 2020, 401: 126282.
[20] LI W, XU F, DAI F, et al. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomaterials Science, 2023, 11: 3976.
[21] MOYANO D F, GOLDSMITH M, SOLFIELL D J, et al. Nanoparticle hydrophobicity dictates immune response. Journal of the American Chemical Society, 2012, 134(9): 3965.
[22] BHUSHAN B, JUNG Y C, KOCH K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1894):1631.
[23] ZHANG C, YI Y, YANG H, et al. Wide spectrum solar energy absorption based on germanium plated ZnO nanorod arrays: energy band regulation, finite element simulation, super hydrophilicity, photothermal conversion. Applied Materials Today, 2022, 28: 101531.
[24] LV L, XIE Y, LI K, et al. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Advanced Healthcare Materials, 2018, 7(19): 1800675.
[25] WANG H Z, HUANG Z P, CAI Q J, et al. Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes. Carbon, 2010, 48(3): 868.
[26] YUE X, ZHANG T, YANG D, et al. In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oil-water separation. Journal of Industrial and Engineering Chemistry, 2018, 61: 188.
[27] 翦奉林, 冯军, 李必文, 等. TA2纯钛微弧氧化制备TiO2涂层的性能研究. 材料保护, 2023, 56(1): 64.
[28] AU-ARIA A I, AU-GHARIB M. Dry oxidation and vacuum annealing treatments for tuning the wetting properties of carbon nanotube arrays. JoVE, 2013, ( 74):e50378.
[29] TIAN T, WANG Z, CHEN L, et al. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers in Medical Science, 2023, 38(1): 86.
[30] ZHAO X N, LI Y N, WANG Y T. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genetics and Molecular Research, 2016, 15(1): 15017348.
[31] LI K, YAN T, XUE Y, et al. Intrinsically ferromagnetic Fe-doped TiO2 coatings on titanium for accelerating osteoblast response in vitro. Journal of Materials Chemistry B, 2018, 6(36): 5756.
文章导航

/