L-3-(4-吡啶基)-丙氨酸钝化钙钛矿太阳电池界面缺陷
收稿日期: 2020-08-27
修回日期: 2020-10-22
网络出版日期: 2020-11-05
基金资助
国家自然科学基金(51602031);国家自然科学基金(51603021);江苏省“青蓝工程”优秀青年骨干教师(2019);江苏省高等学校自然科学研究重大项目(19KJA430014);江苏省研究生科研与实践创新计划(SJCX20_0975)
Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell
Received date: 2020-08-27
Revised date: 2020-10-22
Online published: 2020-11-05
Supported by
National Natural Science Foundation of China(51602031);National Natural Science Foundation of China(51603021);The Qinlan Project(2019);Natural Science Foundation of the Jiangsu Higher Education Institutions(19KJA430014);Postgraduate Research & Practice Innovation Program of Jangsu Province(SJCX20_0975)
近年来钙钛矿材料因其优异的光电性能而成为光伏领域的研究热点, 但调控钙钛矿太阳电池内界面缺陷仍是亟需解决的关键问题之一。本研究在溶液两步法制备钙钛矿光吸收层的过程中引入有机小分子添加剂(L-3-(4吡啶基)-丙氨酸(L-3-(4-pyridyl)-alanine, (PLA))。测试结果显示引入PLA可提高器件的各光电性能参数, 含PLA器件的最优能量转换效率为21.53%, 而参照器件为20.10%。进一步研究表明引入PLA可延长荧光寿命, 降低器件的陷阱态密度(从5.59×1016cm-3降至3.40×1016cm-3), 促进界面电荷抽取, 抑制载流子复合。器件性能的提升是由于PLA促进PbI2在钙钛矿薄膜晶界处富集及PLA在界面处锚定起到了钝化缺陷的作用。本研究可以为进一步调控钙钛矿太阳电池的缺陷提供借鉴。
刘雯雯 , 胡志蕾 , 王立 , 曹梦莎 , 张晶 , 张婧 , 张帅 , 袁宁一 , 丁建宁 . L-3-(4-吡啶基)-丙氨酸钝化钙钛矿太阳电池界面缺陷[J]. 无机材料学报, 2021 , 36(6) : 629 -636 . DOI: 10.15541/jim20200495
In recent years, perovskite materials become a research hotspot in the field of solar cells due to their excellent photovoltaic properties, but control of their interface defects still remains one of the key problems to be solved. In this study, an organic small molecule additive (L-3-(4-pyridyl)-alanine (PLA)) was introduced in the preparation of perovskite photoabsorption layer by two-step solution method. The characterizations showed that the introduction of PLA could comprehensively improve photoelectric performance of the device, with optimal energy conversion efficiency of 21.53%, in contrast to that of the reference device (20.10%). Further studies showed that PLA could reduce the trap state density of the device from 5.59×1016cm-3 to 3.40×1016cm-3, promote the interface charge extraction, and decrease the carrier recombination. The above improvements can be attributed to the PLA induced PbI2 enrichment at grain boundaries and PLA anchoring at defects, which play an important roles in passivate defects. This study can provide guideline for further regulating the defects of perovskite solar cells.
[1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,131(17):6050-6051. |
[2] | Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. |
[3] | GREEN M A. The path to 25% silicon solar cell ef?ciency: history of silicon cell evolution. Prog. Photovolt: Res. Appl., 2009,17:183-189. |
[4] | XIONG H, ZHANG B X, JIA W, et al. Polymer PVP additive for improving stability of perovskite solar cells. J. Inorg. Mater., 2019,34(1):96-102. |
[5] | YU S W, ZHAO Z W, ZHAO J J, et al. Research progress in novel in-situ integrative photovoltaic-storage tandem cells. J. Inorg. Mater., 2020,35(6):623-632. |
[6] | CHU Z Y, LI G L, JIANG Z H, et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. J. Inorg. Mater., 2018,33(10):1035-1045. |
[7] | PATIL J V, MALI S S, HONG C K. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 2019,11:21824-21833. |
[8] | ZHANG S, LU Y T, LIN B C, et al. PVDF-HFP additive for visible-light-semitransparent perovskite ?lms yielding enhanced photovoltaic performance. Sol. Energy Mat. Sol. C, 2017,170:178-186. |
[9] | ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017,2:17102. |
[10] | DE ROO J, IBA?N?EZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016,10:2071-2081. |
[11] | YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2019,141(14):5781-5787. |
[12] | BARLY I L, DEQUILETTES D W, PAZOS-QUTON, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics, 2018,12:355-361. |
[13] | YANG J, LIU C, CAI C, et al. High performance perovskite solar cells with excellent humidity and thermo stability via fluorinated perylenediimide. Adv. Energy. Mater., 2019,9(18):1900198. |
[14] | ZHANG S, HU Z L, ZHANG J, et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. J. Power Sources, 2019,438:226987. |
[15] | WANG H H, WANG Z W, YANG Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater., 2020,32(21):2000865. |
[16] | NIU T Q, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018,30(16):1706576. |
[17] | DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 2014,5(6):1035-1039. |
[18] | STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013,342(6156):341-344. |
[19] | CHEN J H, ZUO L J, ZHANG Y Z, et al. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater., 2018,8(23):1800438. |
[20] | WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc., 2018,140(33):10504-10513. |
[21] | IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-ef?ciency perovskite solar cells. Nat. Nanotechnol., 2014,9(181):927-932. |
[22] | LIU Y, MONOJIT B, LAWRENCE A R, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater., 2015,6:1501606. |
[23] | WU Y H, WANG P, ZHANG W H. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 2018,11(5):837-842. |
[24] | HOU Y, DU X Y, SIMON S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,358(6367):1192-1197. |
[25] | ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater, 2019,29:1900484. |
[26] | CHEN H Y, ZHAN Y, XU G Y, et al. Organic n-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater., 2020,120(6):8267-8302. |
[27] | DEQUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015,348(6235):683-686. |
[28] | WANG L, LIU H, LIU C W, et al. Approaching optimal hole transport layers by organic monomolecular strategy for efficient inverted perovskite solar cells. J. Mater. Chem. A, 2020,4(6):1-21. |
[29] | HOU M N, XU Y Z, ZHOU B, et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv. Funct. Mater., 2020,30(34):2002366. |
[30] | SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis free perovskite solar cell via defect engineering. J. Am. Chem. Soc., 2018,140(4):1358-1364. |
[31] | GUERRERO A, GARCIA-BELMONTE, MORA-SERO I, et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C, 2016,120(15):8023-8032. |
[32] | WANG Q, MOSER J E, GRTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 2005,109(31):14945-53. |
[33] | ZHANG S, DONG G Y, LIN B C, et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. J. Power Sources, 2015,277:52-58. |
[34] | ZHANG S, DONG G Y, LIN B C, et al. Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi- solid-state electrolyte with an inverse opal structure. Sol Energy, 2016,127:19-27. |
[35] | YANG J A, XIAO A D, XIE L S, et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta, 2020,338:135697. |
/
〈 |
|
〉 |