综述

导电金属有机骨架材料在超级电容器中的应用

  • 李泽晖 ,
  • 谭美娟 ,
  • 郑元昊 ,
  • 骆雨阳 ,
  • 经求是 ,
  • 蒋靖坤 ,
  • 李明杰
展开
  • 1. 清华大学 环境学院, 环境模拟与污染控制国家重点联合实验室, 北京 100084
    2. 南京信息工程大学 环境科学与工程学院, 南京 210044
    3. 清华大学 材料学院, 北京 100084
    4. 中国科学院 青岛生物能源与过程研究所, 中科院生物基材料重点实验室, 青岛 266101
李泽晖(1991-), 男, 博士研究生. E-mail: lzh17@mails.tsinghua.edu.cn
LI Zehui(1991-), male, PhD candidate. E-mail: lzh17@mails.tsinghua.edu.cn

收稿日期: 2019-08-16

  修回日期: 2019-09-29

  网络出版日期: 2019-10-17

基金资助

国家自然科学基金青年基金(51608509)

Application of Conductive Metal Organic Frameworks in Supercapacitors

  • Zehui LI ,
  • Meijuan TAN ,
  • Yuanhao ZHENG ,
  • Yuyang LUO ,
  • Qiushi JING ,
  • Jingkun JIANG ,
  • Mingjie LI
Expand
  • 1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
    2. Nanjing University of Information Science and Technology, Nanjing 210044, China
    3. School of Environmental Science and Engineering, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
    4. CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Biomass Energy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

Received date: 2019-08-16

  Revised date: 2019-09-29

  Online published: 2019-10-17

Supported by

National Natural Science Foundation of China(51608509)

摘要

随着电子技术的持续发展, 对供电设备的要求也相应提高。超级电容器(SCs)具有较高的能量密度和优异的功率输出性能, 是新一代小型化、智能化、可穿戴电子设备的理想供电装置。开发能够快速充放电、性能稳定的SCs产品是储能领域的研究重点。电极材料作为SCs最重要的组成部分, 是进一步提升其性能的关键。导电金属有机骨架(MOFs)作为新型SCs电极材料, 具有规整的孔道结构、大比表面积、多种形貌及维度、可调控的导电性能等优异性质, 展现出巨大的潜力并引起了广泛关注。本文结合SCs的储能机理, 介绍了导电MOFs的结构、制备及导电机制, 进一步阐述了其作为SCs电极材料的设计策略, 重点综述了其在SCs领域的研究进展, 并展望了其应用前景与发展方向。

本文引用格式

李泽晖 , 谭美娟 , 郑元昊 , 骆雨阳 , 经求是 , 蒋靖坤 , 李明杰 . 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020 , 35(7) : 769 -780 . DOI: 10.15541/jim20190433

Abstract

With continuous development of electronics, the requirements for power supply systems are increasing. Supercapacitors (SCs), which have high energy density and excellent power output performance, are ideal power supplies for new generation of miniaturized, intelligent and wearable electronic devices. Thus, developing SCs with fast charge-discharge speed and high stability is a key research topic in the field of energy storage. As the most important part of SCs, electrode materials are critical to its performance. Due to the excellent performances of high-ordered pore structure, large specific surface area, diverse morphologies and dimensions, and adjustable conductivity, conductive metal-organic frameworks (MOFs) materials have shown great potential as promising SCs electrode materials, and have attracted wide attention. This review introduces the structure, conductive mechanism and preparation methods of conductive MOFs following a short introduction of SCs, describes its design strategy as SCs electrode materials, reviews the research progress of conductive MOFs in the field of SCs, and prospects its future application.

参考文献

[1] MEHTAB T, YASIN G, ARIF M, et al. Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage, 2019,21:632-646.
[2] FAN Z, YAN J, TONG W, et al. Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv. Funct. Mater., 2011,21(12):2366-2375.
[3] CHEN W, YU H, LEE S Y, et al. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem. Soc. Rev., 2018,47(8):2837-2872.
[4] CHENG J, CHEN S, CHEN D, et al. Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A, 2018,6(41):20254-20266.
[5] XUAN W, ZHU C, LIU Y, et al. Mesoporous metal-organic framework materials. Chem. Soc. Rev., 2012,41(5):1677-1695.
[6] ZHU Q L, XU Q. Metal-organic framework composites. Chem. Soc. Rev., 2014,43(16):5468-5512.
[7] ZHENG S, LI X, YAN B, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater., 2017,7(18):1602733.
[8] JIANG L, SHENG L, LONG C, et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy, 2015,11(21):471-480.
[9] SUNDRIYAL S, KAUR H, BHARDWAJ S K, et al. Metal-organic frameworks and their composites as efficient electrodes for supercapacitor applications. Coord. Chem. Rev., 2018,369:15-38.
[10] LI L X, TAO J, GENG X, et al. Preparation and supercapacitor performance of nitrogen-doped carbon nanotubes from polyaniline modification. Acta Phys-Chim. Sin., 2013,29(1):924-929.
[11] YAN J, TONG W, BO S, et al. Preparation of a graphene nanosheet/ polyaniline composite with high specific capacitance. Carbon, 2010,48(2):487-493.
[12] SUBRAMANIAN V, ZHU H, VAJTAI R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Physi. Chem. B, 2005,109(43):20207-20214.
[13] WANG Q, WEN Z, JINGHONG L. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater., 2010,16:2141-2146.
[14] ROWSELL J L C, YAGHI O M. Metal-organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat., 2004,73(1):3-14.
[15] HENDON C H, TIANA D, WALSH A. Conductive metal-organic frameworks and networks: fact or fantasy? Phys. Chem. Chem. Phys., 2012,14(38):13120-13132.
[16] KOBAYASHI Y, JACOBS B, ALLENDORF M D, et al. Conductivity, doping, and redox chemistry of a microporous dithiolene-based metal-organic framework. Chem. Mater., 2010,22(14):4120-4122.
[17] GáNDARA F, URIBE-ROMO F J, BRITT D K, et al. Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. Chem. Eur-J., 2012,18(34):10595-10601.
[18] LI R, WANG S H, CHEN X X, et al. Highly anisotropic and water molecule-dependent proton conductivity in a 2D homochiral copper (II) metal-organic framework. Chem. Mater., 2017,29(5):2321-2331.
[19] SADAKIYO M, YAMADA T, KITAGAWA H. Rational designs for highly proton-conductive metal-organic frameworks. J. Am. Chem. Soc., 2009,131(29):9906-9007.
[20] SADAKIYO M, YAMADA T, KITAGAWA H. Proton conductivity control by ion substitution in a highly proton-conductive metal-organic framework. J. Am. Chem. Soc., 2014,136(38):13166-13169.
[21] TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework. Chem. Mater., 2015,27(7):2286-2289.
[22] KO M, MENDECKI L, MIRICA K A. Conductive two-dimensional metal-organic frameworks as multifunctional materials. Chem. Commun., 2018,54(57):7873-7891.
[23] SUN L, HENDON C H, MINIER M A, et al. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O). J. Am. Chem. Soc., 2015,137(19):6164-6167.
[24] LIN S, USOV P M, MORRIS A J. The role of redox hopping in metal-organic framework electrocatalysis. Chem. Commun., 2018,54(51):6965-6974.
[25] LEE D Y, SHINDE D V, KIM E K, et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology. Micropor. Mesopor. Mat., 2013,171(10):53-57.
[26] HUANG H, LI J R, WANG K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nat. Commun., 2015,6:8847.
[27] HOU J, CAO C, IDREES F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano, 2015,9(3):2556-2564.
[28] TAN Y, ZHANG W, GAO Y, et al. Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Adv., 2015,5(23):17601-17605.
[29] LI W H, KUI D, TIAN H R, et al. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors. Adv. Funct. Mater., 2017,27(27):1702067.
[30] SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater., 2017,16(2):220-224.
[31] WEI C, RAKHI R B, WANG Q, et al. Morphological and electrochemical cycling effects in MnO2 nanostructures by 3D electron tomography. Adv. Funct. Mater., 2014,24(21):3130-3143.
[32] CHEN Y, DAN N, YANG X, et al. Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochim. Acta, 2018,278:114-123.
[33] ZHANG J, HAN B. Supercritical or compressed CO2 as a stimulus for tuning surfactant aggregations. Accounts Chem. Res., 2013,46(2):425-433.
[34] YU H, XU D, XU Q. Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal-organic framework. Chem. Commun., 2015,51(67):13197-13200.
[35] CAMPAGNOL N, ROMERO-VARA R, DELEU W, et al. A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100(Fe). ChemElectroChem, 2014,1(7):1182-1188.
[36] LEE D Y, YOON S J, SHRESTHA N K, et al. Unusual energy storage and charge retention in Co-based metal-organic-frameworks. Micropor. Mesopor. Mat., 2012,153(3):163-165.
[37] LIAO C, ZUO Y, WEI Z, et al. Russ. Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. J. Electrochem., 2013,49(10):983-986.
[38] XU J, CHAO Y, XUE Y, et al. Facile synthesis of novel metal-organic nickel hydroxide nanorods for high performance supercapacitor. Electrochim. Acta, 2016,211:595-602.
[39] YANG J, XIONG P, ZHENG C, et al. Metal-organic frameworks: a new promising class of material for high performances supercapacitor electrode. J. Mater. Chem. A, 2014,2(39):16640-16644.
[40] KANG L, SUN S X, KONG L B, et al. Investigating metal-organic framework as a new pseudo-capacitive material for supercapacitors. Chinese Chem. Lett., 2014,25(6):957-961.
[41] QU C, JIAO Y, ZHAO B, et al. Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy, 2016,26:66-73.
[42] GONG Y, LI J, JIANG P, et al. Novel metal(II) coordination polymers based on N,N'-bis-(4-pyridyl)phthalamide as supercapacitor electrode materials in an aqueous electrolyte. Dalton Trans., 2013,42(5):1603-1611.
[43] KANNANGARA Y Y, RATHNAYAKE U A, SONG J K. Redox active multi-layered Zn-pPDA MOFs as high-performance supercapacitor electrode material. Electrochim. Acta, 2019,297:145-154.
[44] CHOI K M, JEONG H M, PARK J H, et al. Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano, 2014,8(7):7451-7457.
[45] YANG J, ZHENG C, XIONG P, et al. Zn-doped Ni-MOF material with a high supercapacitive performance. J. Mater. Chem. A, 2014,2(44):19005-19010.
[46] DíAZ R, ORCAJO M G, BOTAS J A, et al. Co8-MOF-5 as electrode for supercapacitors. Mater. Lett., 2012,68:126-128.
[47] GAO W, CHEN D, QUAN H, et al. Fabrication of hierarchical porous metal-organic framework electrode for aqueous asymmetric supercapacitor. ACS Sustain. Chem. Eng., 2017,5(5):4144-4153.
[48] TALIN A A, CENTRONE A, FORD A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science, 2014,343(6166):66-69.
[49] CHUI S S Y, LO S M F, CHARMANT J P, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999,283(5405):1148-1150.
[50] WANG K, WANG Z, XIN W, et al. Flexible long-chain-linker constructed Ni-based metal-organic frameworks with 1D helical channel and their pseudo-capacitor behavior studies. J. Power Sources, 2018,377:44-51.
[51] SALUNKHE R R, KANETI Y V, KIM J, et al. Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications. Accounts Chem. Res., 2016,49(12):2796-2806.
[52] WANG L, FENG X, REN L, et al. Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc., 2015,137(15):4920-4923.
[53] YANG J, GANG C, CHEN D, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. J. Mater. Chem. A, 2017,5(45):23744-23752.
[54] WANG Z, GAO C, LIU Y, et al. Electrochemical performance and transformation of Co-MOF/reduced graphene oxide composite. Mater. Lett., 2017,193:216.
[55] BENNETT T D, CHEETHAM A K. Amorphous metal-organic frameworks. Accounts Chem. Res., 2014,47(5):1555-1562.
[56] YANG F, LI W, TANG B J. Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Joarnal of Alloys & Compounds, 2018,733:8-14.
[57] MCHUGH L N, MCPHERSON M J, MCCORMICK L J, et al. Hydrolytic stability in hemilabile metal-organic frameworks. Nat. Chem., 2018,10(11):1096-1102.
[58] LAN Y, LI Z, YU C, et al. Application of zeolitic imidazolate framework in supercapacitor. New Chem. Mater., 2017,45(8):8-10.
[59] LI Z, WANG W, CAO H, et al. Boron doped ZIF-67@graphene derived carbon electrocatalyst for highly efficient enzyme-free hydrogen peroxide biosensor. Adv. Mater. Tech., 2017,2(12):1700224.
[60] LI Z, JIANG Y, WANG Z, et al. Nitrogen-rich core-shell structured particles consisting of carbonized zeolitic imidazolate frameworks and reduced graphene oxide for amperometric determination of hydrogen peroxide. Microchim. Acta, 2018,185(11):501.
[61] LI Z, LAN Y, CAO H, et al. Carbon materials derived from chitosan/ cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohyd. Polym., 2017,175(1):223-230.
[62] LI Z, HE H, CAO H, et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ., 2019,240:112-121.
[63] GAILLAC R, PULLUMBI P, BEYER K A, et al. Liquid metal-organic frameworks. Nat. Mater., 2017,16(11):1149-1154.
文章导航

/