Ti(IV)-石墨烯双助剂协同效应增强钨酸铋光催化性能

  • 宋佳 ,
  • 徐瑛 ,
  • 貊艳平 ,
  • 李永安
展开
  • (武汉理工大学 化学化工与生命科学学院 化学系, 武汉 430070)
宋 佳(1990–), 女, 硕士研究生. E-mail: doudousj@whut.edu.cn

收稿日期: 2016-05-30

  修回日期: 2016-09-16

  网络出版日期: 2017-02-24

基金资助

国家自然科学基金(21477094) National Natural Science Foundation of China (21477094)

Enhanced Photocatalytic Activity of Bi2WO6 by the Synergistic Action of Ti(IV) and Graphene Bi-cocatalysts

  • Jia SONG ,
  • Ying XU ,
  • Yan-Ping MO ,
  • Yong-An LI
Expand
  • (Department of Chemistry, Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China)
SONG Jia. E-mail: doudousj@whut.edu.cn

Received date: 2016-05-30

  Revised date: 2016-09-16

  Online published: 2017-02-24

摘要

助剂修饰是促进光生电子和空穴分离的有效途径。采用新型无定型Ti(IV)空穴助剂与高电子传输率的还原石墨烯(rGO)电子助剂相结合, 以水热-浸渍沉积法合成Ti(IV)和rGO共修饰的高效片状钨酸铋(Ti(IV)-rGO/Bi2WO6)可见光光催化剂。结果表明, 与单独Bi2WO6相比, 助剂Ti(IV)或rGO修饰的Bi2WO6可见光光催化降解甲基橙(MO)性能增强。双助剂共修饰的Bi2WO6光催化剂光催化活性更高, 当Ti(IV)含量为5wt%时, 双助剂共修饰的Bi2WO6光催化剂性能最佳, 光催化速率常数达2.2×10-2 min-1, 是纯Bi2WO6的88倍。光催化性能增强主要归因于新型Ti(IV)空穴助剂与rGO电子助剂的协同作用, 即Ti(IV)快速转移光生空穴, 同时rGO快速传递并转移电子。本文有望为新型助剂修饰光催化材料研究提供新思路。

本文引用格式

宋佳 , 徐瑛 , 貊艳平 , 李永安 . Ti(IV)-石墨烯双助剂协同效应增强钨酸铋光催化性能[J]. 无机材料学报, 2017 , 32(3) : 269 -274 . DOI: 10.15541/jim20160345

Abstract

Cocatalyst modification is an effective way to promote the separation of photogenerated electron-hole pairs. The reduced graphene oxide (rGO) with high electron transfer rate and the amorphous Ti(IV) compounds as hole cocatalyst were loaded on the surface of highly-efficient and flake-like Bi2WO6 nanoparticles by a hydrothermal-impregnation method to prepare Ti(IV)-rGO/Bi2WO6 visible-light-driven photocatalyst. It was found that the Ti(IV) and rGO single-cocatalyst modified Bi2WO6 exhibited an enhanced photocatalytic activity and dual-cocatalyst modified Bi2WO6 photocatalyst showed higher photocatalytic performance than single-cocatalyst modified Bi2WO6. When the amount of Ti(IV) was 5wt%, the photocatalytic rate constant of Ti(IV)-rGO/Bi2WO6 photocatalyst reached 2.2×10-2 min-1, which was 88-fold higher than that of bare Bi2WO6. The enhancement of photocatalytic performance mainly depends on the synergistic effect of novel Ti(IV)-hole cocatalyst and rGO-electron cocatalyst, namely, Ti(IV) compounds rapidly transfer the photogenerated holes, while rGO rapidly capture the photogenerated electrons. The present amorphous Ti(IV) and rGO cocatalysts can be widely applied in the design and development of highly efficient cocatalyst-modified photocatalytic materials.

参考文献

[1] YU S H, LIU B, MO M S, et al.General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach.Advanced Functional Materials, 2003, 13(13): 639-647.
[2] NAGIRNYI V, KIM M, KOTLOV A, et al. Separation of excitonic and electron-hole processes in metal tungstates. Journal of Luminescence, 2003, 102-103(5): 597-603.
[3] YANG Y G, WANG Z, XU J H, et al.Influence of surfactants on morphology of lead tungstate crystalline.Journal of Synthetic Crystals, 2008, 37(1): 240-242.
[4] HE J Y, WANG W M, LONG F, et al.Hydrothermal synthesis of hierarchical rose-like Bi2WO6 microspheres with high photocatalytic activities under visible-light irradiation.Materials Science and Engineering: B, 2012, 177(12): 967-974.
[5] GUI M S, WANG P F, YUAN D, et al.Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalysts.Chinese Journal of Inorganic Chemistry, 2013, 29(10): 2057-2064.
[6] HU S P, XU C Y, ZHEN L.Solvothermal synthesis of Bi2WO6 hollow structures with excellent visible-light photocatalytic properties.Materials Letters, 2013, 95(3): 117-120.
[7] WANG X, CHANG L, WANG J, et al.Surfactant-free hydrothermal synthesis of flower-like Bi2WO6 with enhanced solar-light- induced photocatalytic performance.Micro & Nano Letters, 2012, 7(11): 1129-1132.
[8] LAI K, ZHU Y, LU J, et al.N- and Mo-doping Bi2WO6 in photo-catalytic water splitting.Computational Materials Science, 2013, 67(4): 88-92.
[9] ZHANG L, WANG W Z, SHANG M, et al.Bi2WO6@carbon/ Fe3O4 microspheres: preparation, growth mechanism and application in water treatment.Journal of Hazardous Materials, 2009, 172(2/3): 1193-1197.
[10] COLÓN G, LÓPEZ S M, HIDALGO M C, et al. Sunlight highly photoactive Bi2WO6-TiO2 heterostructures for rhodamine B degradation.Chemical Communications, 2010, 46(40): 4809-4811.
[11] WANG C Y, ZHU L Y, CHANG C, et al.Preparation of magnetic composite photocatalyst Bi2WO6/CoFe2O4 by two-step hydrothermal method and its photocatalytic degradation of bisphenol A.Catalysis Communications, 2013, 37(13): 92-95.
[12] ZHOU Y, ZHANG Q, LIN Y H, et al.One-step hydrothermal synthesis of hierarchical Ag/Bi2WO6 composites: in situ growth monitoring and photocatalytic activity studies.Science China Chemistry, 2013, 56(4): 435-442.
[13] ZHANG N, YANG M Q, LIU S Q, et al.Waltzing with the versatile platform of graphene to synthesize composite photocatalysts.Chemical Reviews, 2015, 115(18): 10307-10377.
[14] THANASIS GEORGIOU, RASHID JALIL, BELLE BRANSON D, et al.Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics.Nature Nanotechnology, 2013, 8(2): 100-103.
[15] HUANG X, QI X Yi, BOEY F, et al.Graphene-based composites.Chem. Soc. Rev., 2012, 41(2): 666-686.
[16] LI H, SONG Z N, ZHANG X J, et al.Ultrathin, molecular-sieving grapheme oxide membranes for selective hydrogen separation.Science, 2013, 342(6154): 95-98.
[17] YANG J, VOIRY D, AHN S J,et al. Two-dimensional hybrid nanosheets of tungsten disulfide and reduced grapheme oxide as catalysts for enhanced hydrogen evolution.Angew. Chem. Int. Ed.2013, 52(51): 13751-13754.
[18] GUO D, WANG P, ZHENG Q Y, et al.One-step synthesis of flower-like Bi2WO6-rGO composite photocatalysts.Journal of Inorganic Materials, 2014, 29(11): 1193-1198.
[19] ZHANG F X, YAMAKATA A, MAEDA K, et al.Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. Journal of the American Chemical Society, 2012, 134(20): 8348-8351.
[20] SHENG J Y, LI X J, XU Y M.Generation of H2O2 and OH radicals on Bi2WO6 for phenol.ACS Catalysis, 2014, 4(3): 732-737.
[21] TOWNSEND T K, BROWNING N D, OSTERLOH F E.Nanoscale strontium titanate photocatalysts for overall water splitting.ACS Nano, 2012, 6(8): 7420-7426.
[22] TOWNSEND T K, BROWNING N D, OSTERLOH F E.Overall photocatalytic water splitting with NiOx-SrTiO3 - a revised mechanism.Energy & Environmental Science, 2012, 5(11): 9543-9550.
[23] HIGASHI M, DOMEN K, ABE R.Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation.J. Am. Chem. Soc., 2012, 134(16): 6968-6971.
[24] LIU M, INDE R, NISHIKAWA M, et al.Enhanced photoactivity with nanocluster-grafted titanium dioxide photocatalysts.ACS Nano, 2014, 8(7): 7229-7238.
[25] EISENBERG D, AHN H S, BARD A J.Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide.J. Am. Chem. Soc., 2014, 136(40): 14011-14014.
[26] HU S, SHANER M R, BEARDSLEE J A, et al.Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation.Science, 2014, 344(6187), 1005-1009.
[27] YU H G, CHEN W Y, WANG X F, et al.Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti(IV) and Fe(III) cocatalysts.Applied Catalysis B: Environmental, 2016, 187: 163-170.
[28] WANG P, WANG J, WANG X F, et al. One-step synthesis of easy- recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Applied Catalysis B: Environmental, 2013, 132-133(12): 452-459.
[29] ZHANG G Y, FENG Y, WU Q S, et al.Facile fabrication of flower-shaped Bi2WO6 superstructures and visible-light-driven photocatalytic performance.Materials Research Bulletin, 2012, 47(8): 1919-1924.
[30] MA H W, SHEN J F, SHI M, et al. Significant enhanced performance for rhodamine B, phenol and Cr(VI) removal by Bi2WO6 nanocomposites via reduced graphene oxide modification. Applied Catalysis B: Environmental, 2012, 121-122: 198-205.
[31] SUN S M, WANG W Z, ZHANG L.Bi2WO6 quantum dots decorated reduced grapheme oxide: Improved charge separation and enhanced photoconversion efficiency.Journal of Physical Chemistry C, 2013, 117(18): 9113-9120.
[32] RANGEL R, BARTOLO-PÉREZ P, Gómez-Cortés A, et al. Comparison Between γ-Bi2MoO6 and Bi2WO6 catalysts in the CO Oxidation.Journal of Materials Synthesis & Processing, 2001, 9(4): 207-212.
[33] YU M, LIU P R, SUN Y J, et al.Fabrication and characterization of graphene-Ag nano particles composites.Journal of Inorganic Materials, 2012, 372(1): 128-131.
[34] CHEN Y, LIU G C, LI Z Y, et al.Citric acid-assisted hydrothermal synthesis of Bi2WO6 nanosheets for highly efficient degradation of methyl orange under visible light irradiation.Chinese Journal of Catalysis, 2011, 32(10): 1631-1638.
[35] XU Y, MO Y P, TIAN J, et al.The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogendoped graphene/TiO2 nanocomposites.Applied Catalysis B: Environmental, 2016, 181: 810-817.
[36] YU H G, LIU R, WANG X F, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 2012, 111-112(6): 326-333.
[37] SUN Q, YU H G, WANG X F, et al.Facile synthesis of porous Bi2WO6 nanosheets with high photocatalytic performance.Dalton Transactions, 2015, 44(32): 14532-14539.
文章导航

/