外贴Fe3O4/CNTs杂化碳纳米纸的碳纳米管复合材料吸波性能
收稿日期: 2014-04-15
修回日期: 2014-06-16
网络出版日期: 2014-12-29
基金资助
国防基础科研项目(A352001106);辽宁省海内外十百千高端人才;辽宁省高等学校攀登学者支持计划
Microwave Abosrbing Properties of CNTs Composites Attached with Fe3O4/CNTs Hybrid Buckypaper
Received date: 2014-04-15
Revised date: 2014-06-16
Online published: 2014-12-29
Supported by
Defense Industrial Technology Development Program of China (A352001106);"Ten Baiqian" Top Talent Porgram at Home and Abroad of Liaoning;Liaoning Province Climbing Scholars Support Plan
通过对Fe3O4纳米粒子接枝碳纳米管的单分散水溶液真空吸滤制备出一种新型的杂化碳纳米纸, 它与树脂浸润良好, 可以与复合材料一体成型。分别借助FE-SEM、EDS、BJH法和振动样品磁强计表征杂化碳纳米纸及其复合材料的微观形貌、元素组成、平均孔径分布和磁性能。在8.2~18 GHz频段内利用波导法测量碳纳米管共混复合材料和外贴杂化碳纳米纸/碳纳米管共混复合材料的电磁参数和吸波反射率。研究结果表明: 外贴一层杂化碳纳米纸(厚0.1 mm)后, 碳纳米管共混复合材料的磁损耗明显增加, 在8.2~18 GHz微波频段内吸波反射率基本上全部小于-10 dB(频宽大于9.7 GHz), 在15.42 GHz位置, 反射损耗峰达-43.18 dB, 远优于碳纳米管共混复合材料。
关键词: Fe3O4接枝碳纳米管; 杂化碳纳米纸; 碳纳米管复合材料; 电磁参数; 反射率
卢少微 , 李倩 , 雄需海 , 马克明 , 许卫凯 , 贾彩霞 . 外贴Fe3O4/CNTs杂化碳纳米纸的碳纳米管复合材料吸波性能[J]. 无机材料学报, 2015 , 30(1) : 23 -28 . DOI: 10.15541/jim20140200
A naval hybrid buckypaper was fabricated by vacuum filtration method with monodispersed solution of Fe3O4 decorated carbon nanotubes (CNTs), which was easy to be infiltrated by resin and can be co-cured with polymer composites. The morphology, element composition, pore size distribution, and magnetic of hybrid buckypaper were characterized by field-emission scanning electron microscope (FE-SEM), energy dispersive spectrometer (EDS), Barret-Joyner-Halenda (BJH) and vibrating sample magnetometer. The electromagnetic parameters of CNTs composite and hybrid buckypaper attached CNTs composite were investigated in the frequency range of 8.2-18 GHz with wave guide method and the reflection loss can be calculated. The hybrid buckypaper with only absorbing thickness of 0.1 mm attached CNTs composite possesses much broader absorbing bandwidth and larger reflectivity than those of CNTs composite, nearly all of which reflectivity is below -10 dB in frequency range of 8.2-18 GHz and the minimum value is -43.18 dB at 15.42 GHz.
[1] | LIJIMA S.Helical microtubules of graphitic carbon.Nature, 1991, 354: 56-58. |
[2] | TONG G X, WU W H, HUA Q, et al.Enhanced electromagnetic characteristics of carbon nanotubes/carbonyl iron powders complex absorbers in 2-18 GHz ranges.Journal of Alloys and Compounds , 2011, 509(2): 451-456. |
[3] | SUI J H, ZHANG C.Microwave absorption and catalytic activity of carbon nanotubes decorated with cobalt nanoparticles.Materials Letters, 2012, 75(15): 158-160. |
[4] | ZHU H, Yu L F, LIN H Y, et al.Study on the microwave absorbing property of composite material containing carbon nanotubes with Ni coating.Journal of Functional Materials, 2007, 38(7): 1213-1216. |
[5] | SHEN Z M, ZHAO D L. Study on the microwave absorbing property of composite material containing carbon nanotubes with Ni coating. New Carbon Materials, 2001, 16(1): l-4. |
[6] | LIU Y, JIANG W, Li S, et al.Electrostatic self-assembly of Fe3O4 nanoparticles on carbon nanotubes.Applied Surface Science, 2009, 255(18): 7999-8002. |
[7] | WANG X Z, ZHAO Z B, QU J Y, et al.Fabrication and characterization of magnetic Fe3O4-CNT composites.Journal Physical Chemical Phys. Solids, 2010, 71(4): 673-676. |
[8] | JIANG F J, PU H T, YANG I L, et al, Preparation and properties of soft magnetic composites based on Fe3O4 coated carbon nanotubes.New Carbon Materials, 2007, 24(4): 371-374. |
[9] | JIANG M J, DANG Z M, Bozlar M, et a1. Broad frequency dielectric behavior in multiwalled carbon nanotube/rubber nanocom posites. Journal of Applied Physics, 2009, 106(8): 1-6. |
[10] | LI Y, CHEN C X.Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/ acrylic resin.Physica, 2009, 404(8-11): 1343-1346. |
[11] | LU SHAOWEI, ZENG XIANJUN, NIE PENG, et al.Electromagnetic and microwave absorbing performance of ultra-thin Fe attached carbon nanotube hybrid buckypaper.Functional Materials Letters, 2014, 7(2): 1-4. |
[12] | LU SHAOWEI, XU WEIKAI, XIONG XUHAI, et al.Preparation, magnetism and microwave absorption performance of ulta-thin Fe3O4/carbon nanotube sandwich buckypaper.Journal of Alloys and Compounds, 2014, 606: 171-176. |
[13] | DU C S, PAN N.Supercapacitors using carbon nanotubes films by electrophoretic deposition.Power Sources, 2006, 160(2): 1487-1494. |
[14] | MAHAJAN S V, HASAN S A, CHO J, et al.Carbon nanotube- nanocrystal heterostructures fabricated by electrophoretic deposition.Nanotechnology, 2008, 19(19): 1-8. |
[15] | DHARP P, Li Z L, NAGARAJAIAH S, et al.Nanotube film based on single-wall carbon nanotubes for strain sensors.Jouranal of Nanoscience and Nanotechnology, 2004, 15(3): 379-382. |
[16] | WU Z C, CHEN Z H, DU X, et al.Transparent, conductive carbon nanotube films.Science , 2004, 305(12): 73-76. |
[17] | ZHAO C Y, ZHANG A B, ZHENG Y P, et al.Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone).Materials Research Bulletin, 2012, 47(2): 217-221. |
[18] | LI G X, GUO Y X, SUN X, et al.Synthesis and microwave absorbing properties of FeNi alloy incorporated ordered mesoporous carbon-silica nanocomposite.Journal of Physics and Chemistry of Solids, 2012, 73(11): 1268-1273. |
[19] | TANG X, HU K.Preparation and electromagnetic wave absorption properties of Fe-doped zinc oxide coated barium ferrite composites.Materials Science and Engineering, 2007, 139(2/3): 119-123. |
[20] | FANG Z G, LI C S, SUN J Y, et al.The electromagnetic characteristics of carbon foams.Carbon, 2007, 45(15): 2873-2879. |
[21] | Dakin T W.Conduction and polarization mechanisms and trends in dielectric.Electrical Insulation Magazine, 2006, 22(5): 11-28. |
[22] | YANG Y, Li Z W, NEO C P, et al.Model design on calculations of microwave permeability and permittivity of Fe/SiO2 particles with core/shell structure.Journal of Physics and Chemistry of Solids, 2014, 75(2): 230-235. |
[23] | XI L, WANG Z, ZUO Y L, et al.The enhanced microwave absorption property of COFe2O4 nanoparticles coated with a CO3Fe7-CO nanoshell by thermal reduction.Nanotechnology, 2011, 22(4): 1-6. |
/
〈 |
|
〉 |